
WELCOME!
(download slides and .py files from

the class site to follow along)
6.100L Lecture 1

Ana Bell

1

TODAY

 Course info
 What is computation
 Python basics

 Mathematical operations
 Python variables and types

 NOTE: slides and code files up before each lecture
 Highly encourage you to download them before class
 Take notes and run code files when I do
 Do the in-class “You try it” breaks
 Class will not be recorded
 Class will be live-Zoomed for those sick/quarantine

6.100L Lecture 1
2

WHY COME TO CLASS?

 You get out of this course what you put into it
 Lectures

 Intuition for concept
 Teach you the concept
 Ask me questions!
 Examples of concept
 Opportunity to

practice practice practice
 Repeat

6.100L Lecture 1
3

PRACTICE

February 3, 2016 6.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

PSETS

EXAMS

MANDATORY
FINGER

EXERCISES

OPTIONAL
(practice)

OFFICE
HOURS

PIAZZA

LECTURES

RECITATION

KNOWLEDGE
OF CONCEPTS

6.100L Lecture 1
4

TOPICS

 Solving problems using computation

 Python programming language

 Organizing modular programs

 Some simple but important algorithms

 Algorithmic complexity

6.100L Lecture 1
5

LET’S GOOOOO!

6

TYPES of KNOWLEDGE

 Declarative knowledge is statements of fact

 Imperative knowledge is a recipe or “how-to”

 Programming is about writing recipes to generate facts

6.100L Lecture 1
7

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

6.100L Lecture 1
8

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

6.100L Lecture 1
9

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

6.100L Lecture 1
10

WE HAVE an ALGORITHM

1) Sequence of simple steps

2) Flow of control process that specifies when each step is
executed
3) A means of determining when to stop

6.100L Lecture 1
11

ALGORITHMS are RECIPES /
RECIPES are ALGORITHMS

 Bake cake from a box
 1) Mix dry ingredients
 2) Add eggs and milk
 3) Pour mixture in a pan
 4) Bake at 350F for 5 minutes
 5) Stick a toothpick in the cake

 6a) If toothpick does not come out clean, repeat step 4 and 5
 6b) Otherwise, take pan out of the oven

 7) Eat

6.100L Lecture 1
12

COMPUTERS are MACHINES that
EXECUTE ALGORITHMS

 Two things computers do:
 Performs simple operations

100s of billions per second!
 Remembers results
100s of gigabytes of storage!

 What kinds of calculations?
 Built-in to the machine, e.g., +
 Ones that you define as the programmer

 The BIG IDEA here?

6.100L Lecture 1
13

A COMPUTER WILL ONLY DO
WHAT YOU TELL IT TO DO

6.100L Lecture 1
14

COMPUTERS are MACHINES that
EXECUTE ALGORITHMS

 Fixed program computer
 Fixed set of algorithms
 What we had until 1940’s

 Stored program computer
 Machine stores and executes instructions

 Key insight: Programs are no different from other kinds of data

6.100L Lecture 1
15

STORED PROGRAM COMPUTER

 Sequence of instructions stored inside computer
 Built from predefined set of primitive instructions

1) Arithmetic and logical
2) Simple tests
3) Moving data

 Special program (interpreter) executes each instruction in
order
 Use tests to change flow of control through sequence
 Stops when it runs out of instructions or executes a halt instruction

6.100L Lecture 1
16

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

17

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

18

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

19

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

20

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

21

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

22

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

23

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

True

24

BASIC PRIMITIVES

 Turing showed that you can compute anything with a very
simple machine with only 6 primitives: left, right, print, scan,
erase, no op

 Real programming languages have
 More convenient set of primitives
 Ways to combine primitives to create new primitives

 Anything computable in one language is computable in any
other programming language

6.100L Lecture 1

© source unknown. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

25

ASPECTS of LANGUAGES

 Primitive constructs
 English: words
 Programming language: numbers, strings, simple operators

6.100L Lecture 1
26

ASPECTS of LANGUAGES

 Syntax
 English: "cat dog boy" not syntactically valid

"cat hugs boy" syntactically valid
 Programming language: "hi"5 not syntactically valid

"hi"*5 syntactically valid

6.100L Lecture 1
27

ASPECTS of LANGUAGES

 Static semantics: which syntactically valid strings have meaning
 English: "I are hungry" syntactically valid

but static semantic error
 PL: "hi"+5 syntactically valid

but static semantic error

6.100L Lecture 1
28

ASPECTS of LANGUAGES

 Semantics: the meaning associated with a syntactically correct
string of symbols with no static semantic errors
 English: can have many meanings "The chicken is

ready to eat."

 Programs have only one meaning
 But the meaning may not be what programmer intended

6.100L Lecture 1
29

WHERE THINGS GO WRONG

 Syntactic errors
 Common and easily caught

 Static semantic errors
 Some languages check for these before running

program
 Can cause unpredictable behavior

 No linguistic errors, but different meaning
than what programmer intended
 Program crashes, stops running
 Program runs forever
 Program gives an answer, but it’s wrong!

6.100L Lecture 1
30

PYTHON PROGRAMS

 A program is a sequence of definitions and commands
 Definitions evaluated
 Commands executed by Python interpreter in a shell

 Commands (statements) instruct interpreter to do something
 Can be typed directly in a shell or stored in a file that is read

into the shell and evaluated
 Problem Set 0 will introduce you to these in Anaconda

6.100L Lecture 1
31

PROGRAMMING ENVIRONMENT:
ANACONDA

6.100L Lecture 1

Code Editor
Shell / Console

32

OBJECTS

 Programs manipulate data objects

 Objects have a type that defines the kinds of things programs
can do to them
 30

 Is a number
 We can add/sub/mult/div/exp/etc

 'Ana'
 Is a sequence of characters (aka a string)
 We can grab substrings, but we can’t divide it by a number

6.100L Lecture 1
33

OBJECTS

 Scalar (cannot be subdivided)
 Numbers: 8.3, 2
 Truth value: True, False

 Non-scalar (have internal structure that can be accessed)
 Lists
 Dictionaries
 Sequence of characters: "abc"

6.100L Lecture 1
34

SCALAR OBJECTS

 int – represent integers, ex. 5, -100
 float – represent real numbers, ex. 3.27, 2.0
 bool – represent Boolean values True and False
 NoneType – special and has one value, None
 Can use type() to see the type of an object

>>> type(5)
int
>>> type(3.0)
float

6.100L Lecture 1
35

6.100L Lecture 1

int
0, 1, 2, …
300, 301 …

-1, -2, -3, …
-400, -401, …

float
0.0, …, 0.21, …
1.0, …, 3.14, …

-1.22, …, -500.0 , …

bool
True
False

NoneType
None

36

YOU TRY IT!
 In your console, find the type of:

 1234
 8.99
 9.0
 True
 False

6.100L Lecture 1
37

TYPE CONVERSIONS (CASTING)

 Can convert object of one type to another
 float(3) casts the int 3 to float 3.0
 int(3.9) casts (note the truncation!) the float 3.9 to int 3

 Some operations perform implicit casts
 round(3.9)returns the int 4

6.100L Lecture 1
38

YOU TRY IT!
 In your console, find the type of:

 float(123)
 round(7.9)
 float(round(7.2))
 int(7.2)
 int(7.9)

6.100L Lecture 1
39

EXPRESSIONS

 Combine objects and operators to form expressions
 3+2
 5/3

 An expression has a value, which has a type
 3+2 has value 5 and type int
 5/3 has value 1.666667 and type float

 Python evaluates expressions and stores the value. It doesn’t
store expressions!

 Syntax for a simple expression
<object> <operator> <object>

6.100L Lecture 1
40

BIG IDEA

Replace complex
expressions by ONE value
Work systematically to evaluate the expression.

6.100L Lecture 1
41

EXAMPLES

 >>> 3+2
 5
 >>> (4+2)*6-1
 35
 >>> type((4+2)*6-1)
 int
 >>> float((4+2)*6-1)
 35.0

6.100L Lecture 1
42

YOU TRY IT!
 In your console, find the values of the following expressions:

 (13-4) / (12*12)
 type(4*3)
 type(4.0*3)
 int(1/2)

6.100L Lecture 1
43

OPERATORS on int and float

 i+j the sum

 i-j the difference

 i*j the product

 i/j division

 i//j floor division

 i%j the remainder when i is divided by j

 i**j i to the power of j

6.100L Lecture 1

if both are ints, result is int
if either or both are floats, result is float

result is always a float

What is type of output?

44

SIMPLE OPERATIONS

 Parentheses tell Python to do these operations first
 Like math!

 Operator precedence without parentheses

**

* / % executed left to right, as appear in expression

+ – executed left to right, as appear in expression

6.100L Lecture 1
45

SO MANY OBJECTS, what to do
with them?!

6.100L Lecture 1

2

-0.3

17

True

0.001

123 False

100.4

x =

b =

a =

flag =

go =

temp =

n =
small =

46

VARIABLES

 Computer science variables are different than math variables
 Math variables

 Abstract
 Can represent many values

 CS variables
 Is bound to one single value at a given time
 Can be bound to an expression

(but expressions evaluate to one value!)

6.100L Lecture 1

a + 2 = b - 1

a = b + 1

x * x = y

m = 10
F = m*9.98

47

BINDING VARIABLES to VALUES

 In CS, the equal sign is an assignment
 One value to one variable name
 Equal sign is not equality, not “solve for x”

 An assignment binds a value to a name

 Step 1: Compute the value on the right hand side (the VALUE)
 Value stored in computer memory

 Step 2: Store it (bind it) to the left hand side (the VARIABLE)
 Retrieve value associated with name by invoking the name

(typing it out)

6.100L Lecture 1

pi = 355/113

48

YOU TRY IT!
 Which of these are allowed in Python? Type them in the

console to check.
 x = 6
 6 = x
 x*y = 3+4
 xy = 3+4

6.100L Lecture 1
49

ABSTRACTING EXPRESSIONS

 Why give names to values of expressions?
 To reuse names instead of values
 Makes code easier to read and modify

 Choose variable names wisely
 Code needs to read
 Today, tomorrow, next year
 By you and others
 You’ll be fine if you stick to letters,

underscores, don’t start with a number

6.100L Lecture 1

#Compute approximate value for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

50

WHAT IS BEST CODE STYLE?

6.100L Lecture 1

#do calculations
a = 355/113 *(2.2**2)
c = 355/113 *(2.2*2)

#calculate area and circumference of a circle
#using an approximation for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

p = 355/113
r = 2.2
#multiply p with r squared
a = p*(r**2)
#multiply p with r times 2
c = p*(r*2)

51

CHANGE BINDINGS

 Can re-bind variable names using new
assignment statements
 Previous value may still stored in memory but

lost the handle for it
 Value for area does not change until you tell the

computer to do the calculation again

6.100L Lecture 1

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14
radius = 2.2
area = pi*(radius**2)
radius = radius+1

52

BIG IDEA
Lines are evaluated one
after the other
No skipping around, yet.
We’ll see how lines can be skipped/repeated later.

6.100L Lecture 1
53

YOU TRY IT!
 These 3 lines are executed in order. What are the values of
meters and feet variables at each line in the code?

meters = 100
feet = 3.2808 * meters
meters = 200

6.100L Lecture 1

ANSWER:

Let’s use PythonTutor to figure out what is going on
 Follow along with this Python Tutor LINK

Where did we tell Python to (re)calculate feet?

54

http://pythontutor.com/visualize.html#code=meters%20%3D%20100%0Afeet%20%3D%203.2808%20*%20meters%0Ameters%20%3D%20200%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!
 Swap values of x and y without binding the numbers directly.

Debug (aka fix) this code.

x = 1
y = 2

y = x
x = y

 Python Tutor to the rescue?

6.100L Lecture 1

ANSWER:

x

y

1

2

x

y

temp

1

2

55

https://pythontutor.com/render.html#code=x%20%3D%201%0Ay%20%3D%202%0A%0Ay%20%3D%20x%0Ax%20%3D%20y&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

SUMMARY

 Objects
 Objects in memory have types.
 Types tell Python what operations you can do with the objects.
 Expressions evaluate to one value and involve objects and operations.
 Variables bind names to objects.
 = sign is an assignment, for ex. var = type(5*4)

 Programs
 Programs only do what you tell them to do.
 Lines of code are executed in order.
 Good variable names and comments help you read code later.

6.100L Lecture 1
56

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

57

https://ocw.mit.edu
https://ocw.mit.edu/terms

STRINGS, INPUT/OUTPUT,
and BRANCHING

(download slides and .py files to follow along)

6.100L Lecture 2
Ana Bell

1

RECAP

 Objects
 Objects in memory have types.
 Types tell Python what operations you can do with the objects.
 Expressions evaluate to one value and involve objects and operations.
 Variables bind names to objects.
 = sign is an assignment, for ex. var = type(5*4)

 Programs
 Programs only do what you tell them to do.
 Lines of code are executed in order.
 Good variable names and comments help you read code later.

6.100L Lecture 2 2

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

var intvar = type(5*4)

2

STRINGS

6.100L Lecture 2 3
3

STRINGS

 Think of a str as a sequence of case sensitive characters
 Letters, special characters, spaces, digits

 Enclose in quotation marks or single quotes
 Just be consistent about the quotes
a = "me"
z = 'you'

 Concatenate and repeat strings
b = "myself"
c = a + b
d = a + " " + b
silly = a * 3

6.100L Lecture 2 4

a "me"

b "myself"

c "memyself"

d "me myself"

silly "mememe"

4

YOU TRY IT!
What’s the value of s1 and s2?
 b = ":"
c = ")"
s1 = b + 2*c

 f = "a"
g = " b"
h = "3"
s2 = (f+g)*int(h)

6.100L Lecture 2 5
5

STRING OPERATIONS

 len() is a function used to retrieve the length of a string in
the parentheses

s = "abc"

len(s) evaluates to 3
chars = len(s)

6.100L Lecture 2 7
6

SLICING to get
ONE CHARACTER IN A STRING

 Square brackets used to perform indexing
into a string to get the value at a certain
index/position
s = "abc"

s[0] evaluates to "a"
s[1] evaluates to "b"
s[2] evaluates to "c"
s[3] trying to index out of

bounds, error
s[-1] evaluates to "c"
s[-2] evaluates to "b"
s[-3] evaluates to "a"

6.100L Lecture 2 8

index: 0 1 2 indexing always starts at 0
index: -3 -2 -1 index of last element is len(s) - 1 or -1

7

SLICING to get a SUBSTRING

 Can slice strings using [start:stop:step]
 Get characters at start

up to and including stop-1
taking every step characters

 If give two numbers, [start:stop], step=1 by default
 If give one number, you are back to indexing for the character

at one location (prev slide)
 You can also omit numbers and leave just colons (try this out!)

6.100L Lecture 2 9
8

SLICING EXAMPLES

 Can slice strings using [start:stop:step]
 Look at step first. +ve means go left-to-right

-ve means go right-to-left

s = "abcdefgh"

s[3:6] evaluates to "def", same as s[3:6:1]

s[3:6:2] evaluates to "df"

s[:] evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1] evaluates to "hgfedcba"

s[4:1:-2] evaluates to "ec"

6.100L Lecture 2 10

index: 0 1 2 3 4 5 6 7
index: -8 -7 -6 -5 -4 -3 -2 -1

9

YOU TRY IT!
s = "ABC d3f ghi"

s[3:len(s)-1]

s[4:0:-1]

s[6:3]

6.100L Lecture 2 11
10

IMMUTABLE STRINGS

 Strings are “immutable” – cannot be modified

 You can create new objects that are versions of the original one

 Variable name can only be bound to one object

s = "car"

s[0] = 'b' gives an error
s = 'b'+s[1:len(s)] is allowed,

s bound to new object

6.100L Lecture 2 12

s

"car"

"bar"

11

BIG IDEA

If you are wondering
“what happens if”…
Just try it out in the console!

6.100L Lecture 2 13
12

INPUT/OUTPUT

6.100L Lecture 2 14
13

PRINTING

 Used to output stuff to console
In [11]: 3+2
Out[11]: 5
 Command is print
In [12]: print(3+2)
5

 Printing many objects in the same command
 Separate objects using commas to output them separated by spaces

 Concatenate strings together using + to print as single object
 a = "the"
b = 3
c = "musketeers"
print(a, b, c)
print(a + str(b) + c)

6.100L Lecture 2 15
14

INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)

6.100L Lecture 2 17

SHELL:

Type anything:

15

INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)

6.100L Lecture 2 18

SHELL:

Type anything: howdy

16

INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)

6.100L Lecture 2 19

SHELL:

Type anything: howdy "howdy"

17

INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)

6.100L Lecture 2 20

text "howdy"

SHELL:

Type anything: howdy

18

INPUT

 x = input(s)
 Prints the value of the string s
 User types in something and hits enter
 That value is assigned to the variable x

 Binds that value to a variable
text = input("Type anything: ")

print(5*text)

6.100L Lecture 2 21

text "howdy"

SHELL:

Type anything: howdy
howdyhowdyhowdyhowdyhowdy

19

INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)

6.100L Lecture 2 22

num1 "3"

SHELL:

Type a number: 3

20

INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)

6.100L Lecture 2 23

num1 "3"

SHELL:

Type a number: 3
33333

21

INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)

6.100L Lecture 2 24

num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3

22

INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)

6.100L Lecture 2 25

num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3num2 3

23

INPUT

 input always returns an str, must cast if working with numbers

num1 = input("Type a number: ")

print(5*num1)

num2 = int(input("Type a number: "))

print(5*num2)

6.100L Lecture 2 26

num1 "3"

SHELL:

Type a number: 3
33333
Type a number: 3
15

num2 3

24

YOU TRY IT!
 Write a program that

 Asks the user for a verb
 Prints “I can _ better than you” where you replace _ with the verb.
 Then prints the verb 5 times in a row separated by spaces.
 For example, if the user enters run, you print:

I can run better than you!
run run run run run

6.100L Lecture 2 27
25

AN IMPORTANT ALGORITHM:
NEWTON’S METHOD

 Finds roots of a polynomial
 E.g., find g such that f(g, x) = g3 – x = 0

 Algorithm uses successive approximation
 next_guess = guess - 𝑓𝑓(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

𝑓𝑓′(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

 Partial code of algorithm that gets input and finds next guess

6.100L Lecture 2 29

#Try Newton Raphson for cube root
x = int(input('What x to find the cube root of? '))
g = int(input('What guess to start with? '))
print('Current estimate cubed = ', g**3)

next_g = g - ((g**3 - x)/(3*g**2))
print('Next guess to try = ', next_g)

26

F-STRINGS

 Available starting with Python 3.6
 Character f followed by a

formatted string literal
 Anything that can be appear in a

normal string literal
 Expressions bracketed by curly braces { }

 Expressions in curly braces evaluated at runtime, automatically
converted to strings, and concatenated to the string preceding
them

6.100L Lecture 2 30

num = 3000
fraction = 1/3
print(num*fraction, 'is', fraction*100, '% of', num)
print(num*fraction, 'is', str(fraction*100) + '% of', num)
print(f'{num*fraction} is {fraction*100}% of {num}')

27

BIG IDEA

Expressions can be
placed anywhere.
Python evaluates them!

6.100L Lecture 2 32
28

CONDITIONS for
BRANCHING

6.100L Lecture 2 33
29

BINDING VARIABLES and VALUES

 In CS, there are two notions of equal
 Assignment and Equality test

 variable = value
 Change the stored value of variable to value
 Nothing for us to solve, computer just does the action

 some_expression == other_expression
 A test for equality
 No binding is happening
 Expressions are replaced by values and computer just does the

comparison
 Replaces the entire line with True or False

6.100L Lecture 2 34

30

COMPARISON OPERATORS

 i and j are variable names
 They can be of type ints, float, strings, etc.

 Comparisons below evaluate to the type Boolean
 The Boolean type only has 2 values: True and False

i > j
i >= j
i < j
i <= j
i == j equality test, True if i is the same as j
i != j inequality test, True if i not the same as j

6.100L Lecture 2 35
31

LOGICAL OPERATORS on bool

 a and b are variable names (with Boolean values)
not a True if a is False

False if a is True
a and b True if both are True
a or b True if either or both are True

6.100L Lecture 2 36

A B A and B A or B
True True True True
True False False True
False True False True
False False False False

32

COMPARISON EXAMPLE

pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.100L Lecture 2 37

pset_time 15

sleep_time 8

derive True

drink False

both False

33

YOU TRY IT!
 Write a program that

 Saves a secret number in a variable.
 Asks the user for a number guess.
 Prints a bool False or True depending on whether the guess

matches the secret.

6.100L Lecture 2 38

34

WHY bool?

 When we get to flow of control, i.e. branching to different
expressions based on values, we need a way of knowing if a
condition is true
 E.g., if something is true, do this, otherwise do that

6.100L Lecture 2 40
35

INTERESTING ALGORITHMS
INVOLVE DECISIONS

6.100L Lecture 2 41

It’s midnight

Go get it!

Free
food
email

Sleep

36

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.100L Lecture 2 42
37

BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Do code within if block if condition is True

6.100L Lecture 2 43

if <condition>:
<code>
<code>
...

<rest of program>

sion>
<expression>
...

else:
<expression>
<expression>
...

<rest of program>

38

BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Do code within if block when condition is True or code within else

block when condition is False.
6.100L Lecture 2 44

if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

39

BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Run the first block whose corresponding <condition> is True

6.100L Lecture 2 45

if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code>
<code>
...

elif <condition>:
<code>
<code>
...

<rest of program>

40

BRANCHING IN PYTHON

 <condition> has a value True or False
 Indentation matters in Python!
 Run the first block whose corresponding <condition> is True.

The else block runs when no conditions were True
6.100L Lecture 2 46

if <condition>:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code>
<code>
...

else:
<code>
<code>
...

<rest of program>

if <condition>:
<code>
<code>
...

elif <condition>:
<code>
<code>
...

elif <condition>:
<code>
<code>
...

<rest of program>

41

BRANCHING EXAMPLE

pset_time = ???

sleep_time = ???

if (pset_time + sleep_time) > 24:

print("impossible!")

elif (pset_time + sleep_time) >= 24:

print("full schedule!")

else:

leftover = abs(24-pset_time-sleep_time)

print(leftover,"h of free time!")

print("end of day")

6.100L Lecture 2 47
42

YOU TRY IT!
 Semantic structure matches visual structure
 Fix this buggy code (hint, it has bad indentation)!

x = int(input("Enter a number for x: "))
y = int(input("Enter a different number for y: "))
if x == y:

print(x,"is the same as",y)
print("These are equal!")

6.100L Lecture 2 48
43

INDENTATION and NESTED
BRANCHING

 Matters in Python
 How you denote blocks of code
x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")

6.100L Lecture 2 50

5
5
True
<-
True
<-

<-

5
0
False

False

<-
<-

0
0
True
<-
False

<-
44

BIG IDEA
Practice will help you
build a mental model of
how to trace the code
Indentation does a lot of the work for you!

6.100L Lecture 2 51
45

YOU TRY IT!
 What does this code print with

 y = 2
 y = 20
 y = 11

 What if if x <= y: becomes elif x <= y: ?

answer = ''
x = 11
if x == y:

answer = answer + 'M'
if x >= y:

answer = answer + 'i'
else:

answer = answer + 'T'
print(answer)

6.100L Lecture 2 52
46

YOU TRY IT!
 Write a program that

 Saves a secret number.
 Asks the user for a number guess.
 Prints whether the guess is too low, too high, or the same as the secret.

6.100L Lecture 2 53
47

BIG IDEA

Debug early,
debug often.
Write a little and test a little.
Don’t write a complete program at once. It introduces too many errors.
Use the Python Tutor to step through code when you see something
unexpected!

6.100L Lecture 2 55
48

SUMMARY

 Strings provide a new data type
 They are sequences of characters, the first one at index 0
 They can be indexed and sliced

 Input
 Done with the input command
 Anything the user inputs is read as a string object!

 Output
 Is done with the print command
 Only objects that are printed in a .py code file will be visible in the shell

 Branching
 Programs execute code blocks when conditions are true
 In an if-elif-elif… structure, the first condition that is True will

be executed
 Indentation matters in Python!

6.100L Lecture 2 56
49

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

50

https://ocw.mit.edu
https://ocw.mit.edu/terms

ITERATION
(download slides and .py files to follow along)

6.100L Lecture 3
Ana Bell

1

LAST LECTURE RECAP

 Strings provide a new data type
 They are sequences of characters, the first one at index 0
 They can be indexed and sliced

 Input
 Done with the input command
 Anything the user inputs is read as a string object!

 Output
 Is done with the print command
 Only objects that are printed in a .py code file will be visible in the shell

 Branching
 Programs execute code blocks when conditions are true
 In an if-elif-elif… structure, the first condition that is True will

be executed
 Indentation matters in Python!

6.100L Lecture 3
2

BRANCHING RECAP

 <condition> has a value True or False
 Evaluate the first block whose corresponding <condition> is
True
 A block is started by an if statement

 Indentation matters in Python!

6.100L Lecture 3

if <condition>:
< code >
< code >
...

if <condition>:
< code >
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

3

 Zelda, Lost Woods tricks you

6.100L Lecture 3

if <exit right>:
<set background to woods_background>
if <exit right>:

<set background to woods_background>
if <exit right>:

<set background to woods_background>
and so on and on and on...

else:
<set background to exit_background>

else:
<set background to exit_background>

else:
<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

4

https://ocw.mit.edu/help/faq-fair-use/

 Zelda, Lost Woods tricks you

6.100L Lecture 3

while <exit_right>:
<set background to woods_background>
<ask user which way to go>

<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

5

https://ocw.mit.edu/help/faq-fair-use/

while LOOPS

6.100L Lecture 3
6

BINGE ALL EPISODES OF ONE SHOW

6.100L Lecture 3

Netflix: start watching a new show

Suggest 3 more shows like this one

There are
more

episodes to
watch?

Play the next one

no

yes

7

CONTROL FLOW: while LOOPS

while <condition>:
<code>
<code>
...

 <condition> evaluates to a Boolean
 If <condition> is True, execute all the steps inside the

while code block
 Check <condition> again
 Repeat until <condition> is False
 If <condition> is never False, then will loop forever!!

6.100L Lecture 3
8

while LOOP EXAMPLE

You are in the Lost Forest.

Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")
print("You got out of the Lost Forest!")

6.100L Lecture 3

where "right"

"left"

9

YOU TRY IT!
 What is printed when you type "RIGHT"?

where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

6.100L Lecture 3
10

while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1

6.100L Lecture 3

n 4

3

2

1

0

11

while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1

 To terminate:
 Hit CTRL-c or CMD-c in the shell
 Click the red square in the shell

6.100L Lecture 3
12

YOU TRY IT!
 Run this code and stop the infinite loop in your IDE
while True:

print("noooooo")

6.100L Lecture 3
13

BIG IDEA

while loops can repeat
code inside indefinitely!
Sometimes they need your intervention to end the program.

6.100L Lecture 3
14

YOU TRY IT!
 Expand this code to show a sad face when the user entered the

while loop more than 2 times.
 Hint: use a variable as a counter
where = input("Go left or right? ")
while where == "right":

where = input("Go left or right? ")
print("You got out!")

6.100L Lecture 3
15

CONTROL FLOW: while LOOPS

 Iterate through numbers in a sequence

n = 0
while n < 5:

print(n)
n = n+1

6.100L Lecture 3
16

A COMMON PATTERN

 Find 4!
 i is our loop variable
 factorial keeps track of the product

 Python Tutor LINK

6.100L Lecture 3

x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}')

17

https://pythontutor.com/visualize.html#code=x%20%3D%204%0Ai%20%3D%201%0Afactorial%20%3D%201%0Awhile%20i%20%3C%3D%20x%3A%0A%20%20%20%20factorial%20*%3D%20i%0A%20%20%20%20i%20%2B%3D%201%0Aprint%28f'%7Bx%7D%20factorial%20is%20%7Bfactorial%7D'%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

for LOOPS

6.100L Lecture 3
18

ARE YOU STILL WATCHING?

6.100L Lecture 3

Netflix while falling asleep
(it plays only 4 episodes if
you’re not paying attention)

Cuts you off

4 episodes
in the

sequence

Play the next episode

Went through all
eps in sequence

Still more eps
in sequence

19

CONTROL FLOW:
while and for LOOPS

 Iterate through numbers in a sequence

very verbose with while loop
n = 0
while n < 5:

print(n)
n = n+1

shortcut with for loop
for n in range(5):

print(n)

6.100L Lecture 3
20

STRUCTURE of for LOOPS

for <variable> in <sequence of values>:
<code>
...

 Each time through the loop, <variable> takes a value

 First time, <variable> is the first value in sequence
 Next time, <variable> gets the second value
 etc. until <variable> runs out of values

6.100L Lecture 3
21

A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code>
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1

6.100L Lecture 3
22

A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code>
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1

6.100L Lecture 3

n 0

1

2

3

4

23

range

 Generates a sequence of ints, following a pattern
 range(start, stop, step)

 start: first int generated
 stop: controls last int generated (go up to but not including this int)
 step: used to generate next int in sequence

 A lot like what we saw for slicing
 Often omit start and step

 e.g., for i in range(4):
 start defaults to 0
 step defaults to 1

 e.g., for i in range(3,5):
 step defaults to 1

6.100L Lecture 3
24

YOU TRY IT!
 What do these print?
 for i in range(1,4,1):

print(i)
 for j in range(1,4,2):

print(j*2)
 for me in range(4,0,-1):

print("$"*me)

6.100L Lecture 3
25

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0
for i in range(10):

mysum += i
print(mysum)

6.100L Lecture 3

i 0

mysum 0

26

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0
for i in range(10):

mysum += i
print(mysum)

6.100L Lecture 3

i 0

mysum 0

1

1

27

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0
for i in range(10):

mysum += i
print(mysum)

6.100L Lecture 3

i 0

mysum 1

1

3

2

28

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0
for i in range(10):

mysum += i
print(mysum)

6.100L Lecture 3

i 0

mysum 3

1

6

2

3

29

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0
for i in range(10):

mysum += i
print(mysum)

6.100L Lecture 3

…

i 0

mysum 36

1

45

2

3

9

30

YOU TRY IT!
 Fix this code to use variables start and end in the range, to get

the total sum between and including those values.
 For example, if start=3 and end=5 then the sum should be 12.
mysum = 0
start = ??
end = ??
for i in range(start, end):

mysum += i
print(mysum)

6.100L Lecture 3
31

for LOOPS and range

 Factorial implemented with a while loop (seen this already)
and a for loop

6.100L Lecture 3

x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}’)

x = 4
factorial = 1
for i in range(1, x+1, 1):

factorial *= i
print(f'{x} factorial is {factorial}')

32

BIG IDEA
for loops only repeat
for however long the
sequence is
The loop variables takes on these values in order.

6.100L Lecture 3
33

SUMMARY

 Looping mechanisms
 while and for loops
 Lots of syntax today, be sure to get lots of practice!

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Can loop over ranges of numbers
 Can loop over elements of a string
 Will soon see many other things are easy to loop over

6.100L Lecture 3
34

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

35

https://ocw.mit.edu
https://ocw.mit.edu/terms

LOOPS OVER STRINGS,
GUESS-and-CHECK,

BINARY
(download slides and .py files to follow along)

6.100L Lecture 4

Ana Bell

1

LAST TIME

 Looping mechanisms
 while and for loops

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Loop variable takes on values in a sequence, one at a time
 Can loop over ranges of numbers
 Will soon see many other things are easy to loop over

6.100L Lecture 4

2

break STATEMENT

 Immediately exits whatever loop it is in

 Skips remaining expressions in code block

 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.100L Lecture 4

3

break STATEMENT

mysum = 0
for i in range(5, 11, 2):

mysum += i
if mysum == 5:

break
mysum += 1

print(mysum)

 What happens in this program?
 Python Tutor LINK

6.100L Lecture 4

4

https://pythontutor.com/visualize.html#code=mysum%20%3D%200%0Afor%20i%20in%20range%285,%2011,%202%29%3A%0A%20%20%20%20mysum%20%2B%3D%20i%0A%20%20%20%20if%20mysum%20%3D%3D%205%3A%0A%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20mysum%20%2B%3D%201%0Aprint%28mysum%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!
 Write code that loops a for loop over some range and prints

how many even numbers are in that range. Try it with:
 range(5)
 range(10)
 range(2,9,3)
 range(-4,6,2)
 range(5,6)

6.100L Lecture 4

5

STRINGS and LOOPS

 Code to check for letter i or u in a string.

 All 3 do the same thing

6.100L Lecture 4

s = "demo loops - fruit loops"
for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':
print("There is an i or u")

for char in s:
if char == 'i' or char == 'u':

print("There is an i or u")

for char in s:
if char in 'iu':

print("There is an i or u")
6

BIG IDEA
The sequence of values
in a for loop isn’t
limited to numbers

6.100L Lecture 4

7

ROBOT CHEERLEADERS

6.100L Lecture 4

8

YOU TRY IT!
 Assume you are given a string of lowercase letters in variable s.

Count how many unique letters there are in the string. For
example, if

s = "abca"
Then your code prints 3.

6.100L Lecture 4

HINT:
Go through each character in s.
Keep track of ones you’ve seen in a string variable.
Add characters from s to the seen string variable if they are not already a character in
that seen variable.

9

SUMMARY SO FAR

 Objects have types
 Expressions are evaluated to one value, and bound to a

variable name

 Branching
 if, else, elif
 Program executes one set of code or another

 Looping mechanisms
 while and for loops
 Code executes repeatedly while some condition is true
 Code executes repeatedly for all values in a sequence

6.100L Lecture 4

10

THAT IS ALL YOU NEED TO
IMPLEMENT ALGORITHMS

6.100L Lecture 4

11

GUESS-and-CHECK

6.100L Lecture 4

12

GUESS-and-CHECK

 Process called exhaustive enumeration
 Applies to a problem where …

 You are able to guess a value for solution
 You are able to check if the solution is correct

 You can keep guessing until
 Find solution or
 Have guessed all values

6.100L Lecture 4

Initial guess

done

Is your
guess

correct?

Choose the
next guess
(Be systematic)

yes

no

13

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess?guess?guess?

14

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

6.100L Lecture 4

15

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root and can
stop (look at guess squared)

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess?

16

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 But what if x is not a perfect square?
 Need to know when to stop
 Use algebra – if guess squared is bigger than x, then can stop

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess? guess? guess?

17

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.100L Lecture 4

18

GUESS-and-CHECK
SQUARE ROOT

 Does this work for any integer value of x?

 What if x is negative?
 while loop immediately terminates

 Could check for negative input, and handle differently

6.100L Lecture 4

x

-2 -1 0 1 2 3 4 5 6 7 8

guess?

19

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0
neg_flag = False
x = int(input("Enter a positive integer: "))
if x < 0:

neg_flag = True
while guess**2 < x:

guess = guess + 1
if guess**2 == x:

print("Square root of", x, "is", guess)
else:

print(x, "is not a perfect square")
if neg_flag:

print("Just checking... did you mean", -x, "?")

6.100L Lecture 4

20

BIG IDEA
Guess-and-check can’t
test an infinite number
of values
You have to stop at some point!

6.100L Lecture 4

21

GUESS-and-CHECK COMPARED

while LOOP for LOOP

6.100L Lecture 4

Initial guess

Break the
loop, you’re

done

Is your
guess

correct
?

Choose next guess
(Be systematic)

yes

no

Nothing here

Did not find a solution

Sequentially
go through
all possible

guesses

Check if
the guess
is correct

Went through all
vals in sequence

Still more vals in
sequence

22

YOU TRY IT!
 Hardcode a number as a secret number.

 Write a program that checks through all the numbers from 1 to
10 and prints the secret value if it’s in that range. If it’s not
found, it doesn’t print anything.

 How does the program look if I change the requirement to be:
If it’s not found, prints that it didn’t find it.

6.100L Lecture 4

23

YOU TRY IT!
 Compare the two codes that:

 Hardcode a number as a secret number.
 Checks through all the numbers from 1 to 10 and prints the secret value if

it’s in that range.

If it’s not found, it doesn’t print anything. If it’s not found, prints that it didn’t find it.

6.100L Lecture 4

Answer:

secret = 7
found = False
for i in range(1,11):

if i == secret:
print("yes, it's", i)
found = True

if not found:
print("not found")

Answer:

secret = 7

for i in range(1,11):
if i == secret:

print("yes, it's", i)

24

BIG IDEA
Booleans can be used as
signals that something
happened
We call them Boolean flags.

6.100L Lecture 4

25

while LOOP or for LOOP?

 Already saw that code looks cleaner when iterating over
sequences of values (i.e. using a for loop)
 Don’t set up the iterant yourself as with a while loop
 Less likely to introduce errors

 Consider an example that uses a for loop and an explicit
range of values

6.100L Lecture 4

26

GUESS-and-CHECK CUBE ROOT:
POSITIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

6.100L Lecture 4

27

GUESS-and-CHECK CUBE ROOT:
POSITIVE and NEGATIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4

28

GUESS-and-CHECK CUBE ROOT:
JUST a LITTLE FASTER

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4

29

ANOTHER EXAMPLE

 Remember those word problems from your childhood?

 For example:
 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 2 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 10 total tickets were sold by the three people
 How many did Alyssa sell?

 Could solve this algebraically, but we can also use guess-and-
check

6.100L Lecture 4

30

GUESS-and-CHECK
with WORD PROBLEMS

for alyssa in range(11):

for ben in range(11):

for cindy in range(11):

total = (alyssa + ben + cindy == 10)

two_less = (ben == alyssa-2)

twice = (cindy == 2*alyssa)

if total and two_less and twice:

print(f"Alyssa sold {alyssa} tickets")

print(f"Ben sold {ben} tickets")

print(f"Cindy sold {cindy} tickets")

6.100L Lecture 4

31

EXAMPLE WITH BIGGER
NUMBERS

 With bigger numbers, nesting loops is slow!

 For example:
 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 20 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 1000 total tickets were sold by the three people
 How many did Alyssa sell?
 The previous code won’t end in a reasonable time

 Instead, loop over one variable and code the equations directly

6.100L Lecture 4

32

MORE EFFICIENT SOLUTION

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")

6.100L Lecture 4

33

BIG IDEA
You can apply
computation to many
problems!

6.100L Lecture 4

34

BINARY NUMBERS

6.100L Lecture 4

35

NUMBERS in PYTHON

 int
 integers, like the ones you learned about in elementary school

 float
 reals, like the ones you learned about in middle school

6.100L Lecture 4

36

OUR MOTIVATION - keep this in
mind for the next few slides

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 4

37

BIG IDEA
Operations on some
floats introduces a very
small error.
The small error can have a big effect if operations are done
many times!

6.100L Lecture 4

38

A CLOSER LOOK AT FLOATS

 Python (and every other programming language) uses “floating
point” to approximate real numbers
 The term “floating point” refers to the way these numbers are

stored in computer

 Approximation usually doesn’t matter
 But it does for us!
 Let’s see why…

6.100L Lecture 4

39

FLOATING POINT
REPRESENTATION

 Depends on computer hardware, not programming language
implementation

 Key things to understand
 Numbers (and everything else) are represented as a sequence of bits (0

or 1).
 When we write numbers down, the notation uses base 10.

 0.1 stands for the rational number 1/10

 This produces cognitive dissonance – and it will influence how we write
code

6.100L Lecture 4

40

WHY BINARY?
HARDWARE IMPLEMENTATION

 Easy to implement in hardware—build components that can be
in one of two states

 Computer hardware is built around methods that can efficiently
store information as 0’s or 1’s and do arithmetic with this rep
 a voltage is “high” or “low” a magnetic spin is “up” or “down”

 Fine for integer arithmetic, but what about numbers with
fractional parts (floats)?

6.100L Lecture 4

41

BINARY NUMBERS

 Base 10 representation of an integer
 sum of powers of 10, scaled by integers from 0 to 9

1507 = 1*103 + 5*102 + 0*101 + 7*100

= 1000 + 500 + 7

 Binary representation is same idea in base 2
 sum of powers of 2, scaled by integers from 0 to 1

 150710 = 1*210 + 1*28 + 1*27 + 1*26 + 1*25 + 1*21 + 1*20

= 1024 + 256 + 128 + 64 + 32 + 2 + 1

= 210 + 28 + 27 + 26 + 25 + 21 + 20

= 101111000112

6.100L Lecture 4

42

CONVERTING DECIMAL INTEGER
TO BINARY

 We input integers in decimal, computer needs to convert to
binary

 Consider example of
 x = 1910 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 10011

 If we take remainder of x relative to 2 (x%2), that gives us
the last binary bit

 If we then integer divide x by 2 (x//2), all the bits get
shifted right
 x//2 = 1*23 + 0*22 + 0*21 + 1*20 = 1001

 Keep doing successive divisions; now remainder gets next bit,
and so on

 Let’s convert to binary form
6.100L Lecture 4

43

DOING THIS in PYTHON for
POSITIVE NUMBERS

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

6.100L Lecture 4

Python Tutor LINK

44

https://pythontutor.com/visualize.html#code=num%20%3D%201507%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

DOING this in PYTHON and
HANDLING NEGATIVE NUMBERS

if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result

6.100L Lecture 4

45

SUMMARY

 Loops can iterate over any sequence of values:
 range for numbers
 A string

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)

 Binary numbers help us understand how the machine works
 Converting to binary will help us understand how decimal numbers are

stored
 Important for the next algorithm we will see

6.100L Lecture 4

46

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

FLOATS and
APPROXIMATION

METHODS
(download slides and .py files to follow along)

6.100L Lecture 5

Ana Bell

1

OUR MOTIVATION FROM LAST
LECTURE

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 5

2

INTEGERS

 Integers have straightforward representations in binary
 The code was simple (and can add a piece to deal with negative

numbers)
if num < 0:

is_neg = True
num = abs(num)

else:
is_neg = False

result = ''
if num == 0:

result = '0'
while num > 0:

result = str(num%2) + result
num = num//2

if is_neg:
result = '-' + result

6.100L Lecture 4
3

FRACTIONS

6.100L Lecture 5

4

FRACTIONS

 What does the decimal fraction 0.abc mean?
 a*10-1 + b*10-2 + c*10-3

 For binary representation, we use the same idea
 a*2-1 + b*2-2 + c*2-3

 Or to put this in simpler terms, the binary representation of a
decimal fraction f would require finding the values of a, b, c,
etc. such that
 f = 0.5a + 0.25b + 0.125c + 0.0625d + 0.03125e + …

6.100L Lecture 5

5

WHAT ABOUT FRACTIONS?

 How might we find that representation?
 In decimal form: 3/8 = 0.375 = 3*10-1 + 7*10-2 + 5*10-3

 Recipe idea: if we can multiply by a power of 2 big enough to
turn into a whole number, can convert to binary, and then
divide by the same power of 2 to restore
 0.375 * (2**3) = 310

 Convert 3 to binary (now 112)
 Divide by 2**3 (shift right three spots) to get 0.0112

6.100L Lecture 5
6

BUT…

 If there is no integer p such that x*(2p) is a whole number,
then internal representation is always an approximation

 And I am assuming that the representation for the decimal
fraction I provided as input is completely accurate and not
already an approximation as a result of number being read into
Python

 Floating point conversion works:
 Precisely for numbers like 3/8
 But not for 1/10
 One has a power of 2 that converts to whole number, the other

doesn’t

6.100L Lecture 5

7

TRACE THROUGH THIS ON YOUR OWN
Python Tutor LINK

x =0.625

p = 0

while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))

p += 1

num = int(x*(2**p))

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

for i in range(p - len(result)):

result = '0' + result

result = result[0:-p] + '.' + result[-p:]

print('The binary representation of the decimal ' + str(x) + ' is ' + str(result))

6.100L Lecture 4

8

https://pythontutor.com/render.html#code=x%20%3D%200.625%0A%0Ap%20%3D%200%0Awhile%20%28%282**p%29*x%29%251%20!%3D%200%3A%0A%20%20%20%20print%28'Remainder%20%3D%20'%20%2B%20str%28%282**p%29*x%20-%20int%28%282**p%29*x%29%29%29%0A%20%20%20%20p%20%2B%3D%201%0A%0Anum%20%3D%20int%28x*%282**p%29%29%0A%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A%0Afor%20i%20in%20range%28p%20-%20len%28result%29%29%3A%0A%20%20%20%20result%20%3D%20'0'%20%2B%20result%0A%0Aresult%20%3D%20result%5B0%3A-p%5D%20%2B%20'.'%20%2B%20result%5B-p%3A%5D%0Aprint%28'The%20binary%20representation%20of%20the%20decimal%20'%20%2B%20str%28x%29%20%2B%20'%20is%20'%20%2B%20str%28result%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

WHY is this a PROBLEM?

 What does the decimal representation 0.125 mean
 1*10-1 + 2*10-2 + 5*10-3

 Suppose we want to represent it in binary?
 1*2-3

 How how about the decimal representation 0.1
 In base 10: 1 * 10-1

 In base 2: ?

6.100L Lecture 5

9

THE POINT?

 If everything ultimately is represented in terms of bits,
we need to think about how to use binary representation
to capture numbers

 Integers are straightforward

 But real numbers (things with digits after the decimal
point) are a problem
 The idea was to try and convert a real number to an int by

multiplying the real with some multiple of 2 to get an int
 Sometimes there is no such power of 2!
 Have to somehow approximate the potentially infinite binary

sequence of bits needed to represent them

6.100L Lecture 5

10

FLOATS

6.100L Lecture 5

11

STORING FLOATING POINT NUMBERS
#.#

 Floating point is a pair of integers
 Significant digits and base 2 exponent
 (1, 1) 1*21 102 2.0
 (1, -1) 1*2-1 0.12 0.5
 (125, -2) 125*2-2 11111.012 31.25

6.100L Lecture 5

125 is 1111101 then move the decimal point over 2

12

USE A FINITE SET OF BITS TO REPRESENT A
POTENTIALLY INFINITE SET OF BITS

 The maximum number of significant digits governs the
precision with which numbers can be represented

 Most modern computers use 32 bits to represent significant
digits

 If a number is represented with more than 32 bits in binary, the
number will be rounded
 Error will be at the 32nd bit
 Error will only be on order of 2*10-10

6.100L Lecture 5

13

SURPRISING RESULTS!

6.100L Lecture 5

x = 0

for i in range(10):

x += 0.125

print(x == 1.25)

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

14

MORAL of the STORY

 Never use == to test floats
 Instead test whether they are within small amount of each other

 What gets printed isn’t always what is in memory
 Need to be careful in designing algorithms that use floats

6.100L Lecture 5

15

APPROXIMATION
METHODS

6.100L Lecture 5

16

LAST LECTURE

 Guess-and-check provides a simple algorithm for solving
problems

 When set of potential solutions is enumerable, exhaustive
enumeration guaranteed to work (eventually)

 It’s a limiting way to solve problems
 Increment is usually an integer but not always. i.e. we just need some

pattern to give us a finite set of enumerable values
 Can’t give us an approximate solution to varying degrees

6.100L Lecture 5

17

BETTER than GUESS-and-CHECK

 Want to find an approximation to an answer
 Not just the correct answer, like guess-and-check
 And not just that we did not find the answer, like guess-and-check

6.100L Lecture 5

18

EFFECT of APPROXIMATION on
our ALGORITHMS?

 Exact answer may not be accessible
 Need to find ways to get “good enough” answer

 Our answer is “close enough” to ideal answer

 Need ways to deal with fact that exhaustive enumeration can’t
test every possible value, since set of possible answers is in
principle infinite

 Floating point approximation errors are important to this
method
 Can’t rely on equality!

6.100L Lecture 5

19

APPROXIMATE sqrt(x)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

20

FINDING ROOTS

 Last lecture we looked at using exhaustive enumeration/guess
and check methods to find the roots of perfect squares
 Suppose we want to find the square root of any positive

integer, or any positive number

 Question: What does it mean to find the square root of x?
 Find an r such that r*r = x ?
 If x is not a perfect square, then not possible in general to find an exact

r that satisfies this relationship; and exhaustive search is infinite

6.100L Lecture 5

21

APPROXIMATION

 Find an answer that is “good enough”
 E.g., find a r such that r*r is within a given (small) distance of x
 Use epsilon: given x we want to find r such that |𝑟𝑟2-x|<𝜀𝜀

 Algorithm
 Start with guess known to be too small – call it g
 Increment by a small value – call it a – to give a new guess g
 Check if g**2 is close enough to x (within 𝜀𝜀)
 Continue until get answer close enough to actual answer

 Looking at all possible values g + k*a for integer values of k
– so similar to exhaustive enumeration
 But cannot test all possibilities as infinite

6.100L Lecture 5

22

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Decreasing increment size slower program, but more likely
to get good answer (and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon23

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Increasing epsilon less accurate answer, but faster program
(and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon24

BIG IDEA
Approximation is like
guess-and-check
except…
1) We increment by some small amount

2) We stop when close enough (exact is not possible)

6.100L Lecture 5

25

IMPLEMENTATION

x = 36

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5

26

OBSERVATIONS with DIFFERENT
VALUES for x

 For x = 36
 Didn’t find 6
 Took about 60,000 guesses

 Let’s try:
 24
 2
 12345
 54321

6.100L Lecture 5

27

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

numGuesses += 1

if numGuesses%100000 == 0:

print('Current guess =', guess)

print('Current guess**2 - x =', abs(guess*guess - x))

print('numGuesses =', numGuesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5

28

WE OVERSHOT the EPSILON!

 Blue arrow is the guess

 Green arrow is guess**2

6.100L Lecture 5

x = 54321

epsilon epsilon

29

SOME OBSERVATIONS

 Decrementing function eventually starts incrementing
 So didn’t exit loop as expected

 We have over-shot the mark
 I.e., we jumped from a value too far away but too small to one too far

away but too large

 We didn’t account for this possibility when writing the loop
 Let’s fix that

6.100L Lecture 5

30

LET’S FIX IT

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

numGuesses += 1

print('numGuesses =', numGuesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 5

31

BIG IDEA
It’s possible to overshoot
the epsilon, so you need
another end condition

6.100L Lecture 5

32

SOME OBSERVATIONS

 Now it stops, but reports failure, because it has over-shot the
answer

 Let’s try resetting increment to 0.00001
 Smaller increment means more values will be checked
 Program will be slower

6.100L Lecture 5

33

BIG IDEA

Be careful when
comparing floats.

6.100L Lecture 5

34

LESSONS LEARNED in
APPROXIMATION

 Can’t use == to check an exit condition

 Need to be careful that looping mechanism doesn’t jump over
exit test and loop forever

 Tradeoff exists between efficiency of algorithm and accuracy of
result

 Need to think about how close an answer we want when
setting parameters of algorithm

 To get a good answer, this method can be painfully slow.
 Is there a faster way that still gets good answers?
 YES! We will see it next lecture….

6.100L Lecture 5

35

SUMMARY

 Floating point numbers introduce challenges!

 They can’t be represented in memory exactly
 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Approximation methods use floats
 Like guess-and-check except that

(1) We use a float as an increment
(2) We stop when we are close enough

 Never use == to compare floats in the stopping condition
 Be careful about overshooting the close-enough stopping condition

6.100L Lecture 5

36

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

37

https://ocw.mit.edu
https://ocw.mit.edu/terms

FLOATS and
APPROXIMATION

METHODS
(download slides and .py files to follow along)

6.100L Lecture 5

Ana Bell

1

OUR MOTIVATION FROM LAST
LECTURE

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 5

2

INTEGERS

 Integers have straightforward representations in binary
 The code was simple (and can add a piece to deal with negative

numbers)
if num < 0:

is_neg = True
num = abs(num)

else:
is_neg = False

result = ''
if num == 0:

result = '0'
while num > 0:

result = str(num%2) + result
num = num//2

if is_neg:
result = '-' + result

6.100L Lecture 4
3

FRACTIONS

6.100L Lecture 5

4

FRACTIONS

 What does the decimal fraction 0.abc mean?
 a*10-1 + b*10-2 + c*10-3

 For binary representation, we use the same idea
 a*2-1 + b*2-2 + c*2-3

 Or to put this in simpler terms, the binary representation of a
decimal fraction f would require finding the values of a, b, c,
etc. such that
 f = 0.5a + 0.25b + 0.125c + 0.0625d + 0.03125e + …

6.100L Lecture 5

5

WHAT ABOUT FRACTIONS?

 How might we find that representation?
 In decimal form: 3/8 = 0.375 = 3*10-1 + 7*10-2 + 5*10-3

 Recipe idea: if we can multiply by a power of 2 big enough to
turn into a whole number, can convert to binary, and then
divide by the same power of 2 to restore
 0.375 * (2**3) = 310

 Convert 3 to binary (now 112)
 Divide by 2**3 (shift right three spots) to get 0.0112

6.100L Lecture 5
6

BUT…

 If there is no integer p such that x*(2p) is a whole number,
then internal representation is always an approximation

 And I am assuming that the representation for the decimal
fraction I provided as input is completely accurate and not
already an approximation as a result of number being read into
Python

 Floating point conversion works:
 Precisely for numbers like 3/8
 But not for 1/10
 One has a power of 2 that converts to whole number, the other

doesn’t

6.100L Lecture 5

7

TRACE THROUGH THIS ON YOUR OWN
Python Tutor LINK

x =0.625

p = 0

while ((2**p)*x)%1 != 0:

print('Remainder = ' + str((2**p)*x - int((2**p)*x)))

p += 1

num = int(x*(2**p))

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

for i in range(p - len(result)):

result = '0' + result

result = result[0:-p] + '.' + result[-p:]

print('The binary representation of the decimal ' + str(x) + ' is ' + str(result))

6.100L Lecture 4

8

https://pythontutor.com/render.html#code=x%20%3D%200.625%0A%0Ap%20%3D%200%0Awhile%20%28%282**p%29*x%29%251%20!%3D%200%3A%0A%20%20%20%20print%28'Remainder%20%3D%20'%20%2B%20str%28%282**p%29*x%20-%20int%28%282**p%29*x%29%29%29%0A%20%20%20%20p%20%2B%3D%201%0A%0Anum%20%3D%20int%28x*%282**p%29%29%0A%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A%0Afor%20i%20in%20range%28p%20-%20len%28result%29%29%3A%0A%20%20%20%20result%20%3D%20'0'%20%2B%20result%0A%0Aresult%20%3D%20result%5B0%3A-p%5D%20%2B%20'.'%20%2B%20result%5B-p%3A%5D%0Aprint%28'The%20binary%20representation%20of%20the%20decimal%20'%20%2B%20str%28x%29%20%2B%20'%20is%20'%20%2B%20str%28result%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

WHY is this a PROBLEM?

 What does the decimal representation 0.125 mean
 1*10-1 + 2*10-2 + 5*10-3

 Suppose we want to represent it in binary?
 1*2-3

 How how about the decimal representation 0.1
 In base 10: 1 * 10-1

 In base 2: ?

6.100L Lecture 5

9

THE POINT?

 If everything ultimately is represented in terms of bits,
we need to think about how to use binary representation
to capture numbers

 Integers are straightforward

 But real numbers (things with digits after the decimal
point) are a problem
 The idea was to try and convert a real number to an int by

multiplying the real with some multiple of 2 to get an int
 Sometimes there is no such power of 2!
 Have to somehow approximate the potentially infinite binary

sequence of bits needed to represent them

6.100L Lecture 5

10

FLOATS

6.100L Lecture 5

11

STORING FLOATING POINT NUMBERS
#.#

 Floating point is a pair of integers
 Significant digits and base 2 exponent
 (1, 1) 1*21 102 2.0
 (1, -1) 1*2-1 0.12 0.5
 (125, -2) 125*2-2 11111.012 31.25

6.100L Lecture 5

125 is 1111101 then move the decimal point over 2

12

USE A FINITE SET OF BITS TO REPRESENT A
POTENTIALLY INFINITE SET OF BITS

 The maximum number of significant digits governs the
precision with which numbers can be represented

 Most modern computers use 32 bits to represent significant
digits

 If a number is represented with more than 32 bits in binary, the
number will be rounded
 Error will be at the 32nd bit
 Error will only be on order of 2*10-10

6.100L Lecture 5

13

SURPRISING RESULTS!

6.100L Lecture 5

x = 0

for i in range(10):

x += 0.125

print(x == 1.25)

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

14

MORAL of the STORY

 Never use == to test floats
 Instead test whether they are within small amount of each other

 What gets printed isn’t always what is in memory
 Need to be careful in designing algorithms that use floats

6.100L Lecture 5

15

APPROXIMATION
METHODS

6.100L Lecture 5

16

LAST LECTURE

 Guess-and-check provides a simple algorithm for solving
problems

 When set of potential solutions is enumerable, exhaustive
enumeration guaranteed to work (eventually)

 It’s a limiting way to solve problems
 Increment is usually an integer but not always. i.e. we just need some

pattern to give us a finite set of enumerable values
 Can’t give us an approximate solution to varying degrees

6.100L Lecture 5

17

BETTER than GUESS-and-CHECK

 Want to find an approximation to an answer
 Not just the correct answer, like guess-and-check
 And not just that we did not find the answer, like guess-and-check

6.100L Lecture 5

18

EFFECT of APPROXIMATION on
our ALGORITHMS?

 Exact answer may not be accessible
 Need to find ways to get “good enough” answer

 Our answer is “close enough” to ideal answer

 Need ways to deal with fact that exhaustive enumeration can’t
test every possible value, since set of possible answers is in
principle infinite

 Floating point approximation errors are important to this
method
 Can’t rely on equality!

6.100L Lecture 5

19

APPROXIMATE sqrt(x)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

20

FINDING ROOTS

 Last lecture we looked at using exhaustive enumeration/guess
and check methods to find the roots of perfect squares
 Suppose we want to find the square root of any positive

integer, or any positive number

 Question: What does it mean to find the square root of x?
 Find an r such that r*r = x ?
 If x is not a perfect square, then not possible in general to find an exact

r that satisfies this relationship; and exhaustive search is infinite

6.100L Lecture 5

21

APPROXIMATION

 Find an answer that is “good enough”
 E.g., find a r such that r*r is within a given (small) distance of x
 Use epsilon: given x we want to find r such that |𝑟𝑟2-x|<𝜀𝜀

 Algorithm
 Start with guess known to be too small – call it g
 Increment by a small value – call it a – to give a new guess g
 Check if g**2 is close enough to x (within 𝜀𝜀)
 Continue until get answer close enough to actual answer

 Looking at all possible values g + k*a for integer values of k
– so similar to exhaustive enumeration
 But cannot test all possibilities as infinite

6.100L Lecture 5

22

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Decreasing increment size slower program, but more likely
to get good answer (and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon23

APPROXIMATION ALGORITHM

 In this case, we have two parameters to set
 epsilon (how close are we to answer?)
 increment (how much to increase our guess?)

 Performance will vary based on these values
 In speed
 In accuracy

 Increasing epsilon less accurate answer, but faster program
(and vice versa)

6.100L Lecture 5

-2 -1 0 1 2 3 4 5 6 7 8

x
guess?

Good
enough

epsilon epsilon24

BIG IDEA
Approximation is like
guess-and-check
except…
1) We increment by some small amount

2) We stop when close enough (exact is not possible)

6.100L Lecture 5

25

IMPLEMENTATION

x = 36

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5

26

OBSERVATIONS with DIFFERENT
VALUES for x

 For x = 36
 Didn’t find 6
 Took about 60,000 guesses

 Let’s try:
 24
 2
 12345
 54321

6.100L Lecture 5

27

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

numGuesses += 1

if numGuesses%100000 == 0:

print('Current guess =', guess)

print('Current guess**2 - x =', abs(guess*guess - x))

print('numGuesses =', numGuesses)

print(guess, 'is close to square root of', x)

6.100L Lecture 5

28

WE OVERSHOT the EPSILON!

 Blue arrow is the guess

 Green arrow is guess**2

6.100L Lecture 5

x = 54321

epsilon epsilon

29

SOME OBSERVATIONS

 Decrementing function eventually starts incrementing
 So didn’t exit loop as expected

 We have over-shot the mark
 I.e., we jumped from a value too far away but too small to one too far

away but too large

 We didn’t account for this possibility when writing the loop
 Let’s fix that

6.100L Lecture 5

30

LET’S FIX IT

x = 54321

epsilon = 0.01

numGuesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

numGuesses += 1

print('numGuesses =', numGuesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 5

31

BIG IDEA
It’s possible to overshoot
the epsilon, so you need
another end condition

6.100L Lecture 5

32

SOME OBSERVATIONS

 Now it stops, but reports failure, because it has over-shot the
answer

 Let’s try resetting increment to 0.00001
 Smaller increment means more values will be checked
 Program will be slower

6.100L Lecture 5

33

BIG IDEA

Be careful when
comparing floats.

6.100L Lecture 5

34

LESSONS LEARNED in
APPROXIMATION

 Can’t use == to check an exit condition

 Need to be careful that looping mechanism doesn’t jump over
exit test and loop forever

 Tradeoff exists between efficiency of algorithm and accuracy of
result

 Need to think about how close an answer we want when
setting parameters of algorithm

 To get a good answer, this method can be painfully slow.
 Is there a faster way that still gets good answers?
 YES! We will see it next lecture….

6.100L Lecture 5

35

SUMMARY

 Floating point numbers introduce challenges!

 They can’t be represented in memory exactly
 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Approximation methods use floats
 Like guess-and-check except that

(1) We use a float as an increment
(2) We stop when we are close enough

 Never use == to compare floats in the stopping condition
 Be careful about overshooting the close-enough stopping condition

6.100L Lecture 5

36

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

37

https://ocw.mit.edu
https://ocw.mit.edu/terms

BISECTION SEARCH
(download slides and .py files to follow along)

6.100L Lecture 6
Ana Bell

1

LAST LECTURE

 Floating point numbers introduce challenges!
 They can’t be represented in memory exactly

 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Guess-and-check enumerates ints one at a time as a solution to
a problem
 Approximation methods enumerate using a float increment.

Checking a solution is not possible. Checking whether a
solution yields a value within epsilon is possible!

6.100L Lecture 6
2

RECAP: SQUARE ROOT FINDING:
STOPPING CONDITION with a BIG INCREMENT (0.01)

 Blue arrow is the guess
 Green arrow is guess**2

6.100L Lecture 6

x = 54321

epsilon epsilon

3

RECAP of APPROXIMATION METHOD TO
FIND A “close enough” SQUARE ROOT

x = 54321

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 6
4

BISECTION SEARCH

6.100L Lecture 6
5

CHANCE to WIN BIG BUCKS

 Suppose I attach a hundred dollar bill to a particular page in the text book,
448 pages long

 If you can guess page in 8 or fewer guesses, you get big bucks
 If you fail, you get an F
 Would you want to play?

 Now suppose on each guess I told you whether you were correct, or too low
or too high

 Would you want to play in this case?

6.100L Lecture 6
6

BISECTION SEARCH

 Apply it to problems with an inherent order to the range of
possible answers
 Suppose we know answer lies within some interval

 Guess midpoint of interval
 If not the answer, check if answer is greater than or less than midpoint
 Change interval
 Repeat

 Process cuts set of things to check in half at each stage
 Exhaustive search reduces them from N to N-1 on each step
 Bisection search reduces them from N to N/2

6.100L Lecture 6
7

LOG GROWTH is BETTER

 Process cuts set of things to check in half at each stage
 Characteristic of a logarithmic growth

 Algorithm comparison: guess-and-check vs. bisection search
 Checking answer on-by-one iteratively is linear in the number of

possible guesses
 Checking answer by guessing the halfway point is logarithmic on the

number of possible guesses
 Log algorithm is much more efficient

6.100L Lecture 6
8

AN ANALOGY

 Suppose we forced you to sit in alphabetical order in class,
from front left corner to back right corner
 To find a particular student, I could ask the person in the

middle of the hall their name
 Based on the response, I can either dismiss the back half or the

front half of the entire hall
 And I repeat that process until I find the person I am seeking

6.100L Lecture 6
9

BISECTION SEARCH for SQUARE
ROOT

 Suppose we know that the answer lies between 0 and x

 Rather than exhaustively trying things starting at 0, suppose
instead we pick a number in the middle of this range

 If we are lucky, this answer is close enough

6.100L Lecture 6

0 x
g

10

BISECTION SEARCH for SQUARE
ROOT

 If not close enough, is guess too big or too small?
 If g**2 > x, then know g is too big; so now search

6.100L Lecture 6

0 x
gnew g

11

BISECTION SEARCH for SQUARE
ROOT

 And if, for example, this new g is such that g**2 < x, then know
too small; so now search

 At each stage, reduce range of values to search by half

6.100L Lecture 6

0 x
gnew g next g

12

BISECTION SEARCH for SQUARE
ROOT

 And if, for example, this next g is such that g**2 < x, then know
too small; so now search

 At each stage, reduce range of values to search by half

6.100L Lecture 6

0 x
g

latest g
next g

13

BIG IDEA

Bisection search takes advantage
of properties of the problem.
1) The search space has an order
2) We can tell whether the guess was too low or too high

6.100L Lecture 6
14

YOU TRY IT!
 You are guessing a 4 digit pin code. The only feedback the

phone tells you is whether your guess is correct or not. Can you
use bisection search to quickly and correctly guess the code?

6.100L Lecture 6
15

YOU TRY IT!
 You are playing an EXTREME guessing game to guess a number

EXACTLY. A friend has a decimal number between 0 and 10 (to
any precision) in mind. The feedback on your guess is whether
it is correct, too high, or too low. Can you use bisection search
to quickly and correctly guess the number?

6.100L Lecture 6
16

SLOW SQUARE ROOT USING
APPROXIMATION METHODS

x = 54321

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.00001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 6
17

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0

while abs(guess**2 - x) >= epsilon:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
18

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
19

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :

else:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
20

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
21

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:
high = guess

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
22

FAST SQUARE ROOT
Python Tutor LINK

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:
high = guess

guess = (high + low)/2.0
num_guesses += 1

print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
23

https://pythontutor.com/render.html#code=x%20%3D%2036%0Aepsilon%20%3D%201%0Alow%20%3D%200%0Ahigh%20%3D%20x%0Aguess%20%3D%20%28high%20%2B%20low%29/2.0%0Awhile%20abs%28guess**2%20-%20x%29%20%3E%3D%20epsilon%3A%0A%20%20%20%20if%20guess**2%20%3C%20x%20%3A%0A%20%20%20%20%20%20%20%20low%20%3D%20guess%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20high%20%3D%20guess%0A%20%20%20%20guess%20%3D%20%28high%20%2B%20low%29/2.0%0Aprint%28guess,%20'is%20close%20to%20square%20root%20of',%20x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

LOG GROWTH is BETTER

 Brute force search for root of 54321 took over 23M guesses

 With bisection search, reduced to 30 guesses!
 We’ll spend more time on this later, but we say the brute force

method is linear in size of problem, because number to steps
grows linearly as we increase problem size
 Bisection search is logarithmic in size of problem, because

number of steps grows logarithmically with problem size
 search space

 first guess: N/2
 second guess: N/4
 kth guess: N/2k

 guess converges on the order of log2N steps

6.100L Lecture 6
24

WHY?

 N/2k = 1 Since at this point we have one guess left to check
this tells us n in terms of k

 N = 2k Solve this for k
 k = log(N) Tells us k in terms of N

It takes us k steps to guess using bisection search
==

It takes us log(N) steps to guess using bisection search

6.100L Lecture 6
25

DOES IT ALWAYS WORK?

 Try running code for x such that 0 < x < 1
 If x < 1, we are searching from 0 to x

 But know square root is greater than x and less than 1

 Modify the code to choose the search space depending on
value of x

6.100L Lecture 6
26

You Try It: BISECTION SEARCH –
SQUARE ROOT with 0 < x < 1

x = 0.5
epsilon = 0.01

guess = (high + low)/2

while abs(guess**2 - x) >= epsilon:
if guess**2 < x:

low = guess
else:

high = guess
guess = (high + low)/2.0

print(f'{str(guess)} is close to square root of {str(x)}')
6.100L Lecture 6

27

BISECTION SEARCH – SQUARE
ROOT for ALL x VALUES

x = 0.5
epsilon = 0.01

if x >= 1:
low = 1.0
high = x

else:
low = x
high = 1.0

guess = (high + low)/2

while abs(guess**2 - x) >= epsilon:
if guess**2 < x:

low = guess
else:

high = guess
guess = (high + low)/2.0

print(f'{str(guess)} is close to square root of {str(x)}')
6.100L Lecture 6

28

SOME OBSERVATIONS

 Bisection search radically reduces computation time – being
smart about generating guesses is important
 Search space gets smaller quickly at the beginning and then

more slowly (in absolute terms, but not as a fraction of search
space) later
 Works on problems with “ordering” property

6.100L Lecture 6
29

YOU TRY IT!
 Write code to do bisection search to find the cube root of

positive cubes within some epsilon. Start with:
cube = 27
epsilon = 0.01
low = 0
high = cube

6.100L Lecture 6
30

NEWTON-RAPHSON

 General approximation algorithm to find roots of a polynomial
in one variable

p(x) = anxn + an-1xn-1 + … + a1x + a0

 Newton and Raphson showed that if g is an approximation to
the root, then

g – p(g)/p’(g)
is a better approximation; where p’ is derivative of p

 Try to use this idea for finding the square root of x
 Want to find r such that p(r) = 0
 For example, to find the square root of 24, find the root of p(x) = x2 – 24

6.100L Lecture 6
31

INTUITION - LINK

6.100L Lecture 6
32

https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif

NEWTON-RAPHSON ROOT FINDER

 Simple case for a polynomial: x2 - k
 First derivative: 2x
 Newton-Raphson says given a guess g for root of k, a better

guess is:
g – (g2 –k)/2g

 This eventually finds an approximation to the square root of k!

6.100L Lecture 6
33

NEWTON-RAPHSON ROOT FINDER

 Another way of generating guesses which we can check; very
efficient

epsilon = 0.01

k = 24.0

guess = k/2.0

num_guesses = 0

while abs(guess*guess - k) >= epsilon:

num_guesses += 1

guess = guess - (((guess**2) - k)/(2*guess))

print('num_guesses = ' + str(num_guesses))

print('Square root of ' + str(k) + ' is about ' + str(guess))

6.100L Lecture 6
34

ITERATIVE ALGORITHMS

 Guess and check methods build on reusing same code
 Use a looping construct
 Generate guesses (important difference in algorithms)
 Check and continue

 Generating guesses
 Exhaustive enumeration
 Approximation algorithm
 Bisection search
 Newton-Raphson (for root finding)

6.100L Lecture 6
35

SUMMARY

 For many problems, cannot find exact answer

 Need to seek a “good enough” answer using approximations
 When testing floating point numbers

 It’s important to understand how the computer represents these in
binary

 Understand why we use “close enough” and not “==“

 Bisection search works is FAST but for problems with:
 Two endpoints
 An ordering to the values
 Feedback on guesses (too low, too high, correct, etc.)

 Newton-Raphson is a smart way to find roots of a polynomial

6.100L Lecture 6
36

DECOMPOSITION and
ABSTRACTION

6.100L Lecture 6
37

LEARNING to CREATE CODE

 So far have covered basic language mechanisms – primitives,
complex expressions, branching, iteration
 In principle, you know all you need to know to accomplish

anything that can be done by computation

 But in fact, we’ve taught you nothing about two of the most
important concepts in programming…

6.s061 Lecture 7
38

DECOMPOSITION and
ABSTRACTION

 Decomposition

 How to divide a program into self-contained parts that can be
combined to solve the current problem

6.s061 Lecture 7
39

DECOMPOSITION and
ABSTRACTION

 Abstraction

 How to ignore unnecessary detail

6.s061 Lecture 7
40

DECOMPOSITION and
ABSTRACTION

 Decomposition:
 Ideally parts can be reused by other programs
 Self-contained means parts should complete computation using only

inputs provided to them and “basic” operations

 Abstraction:
 Used to separate what something does, from how it actually does it
 Creating parts and abstracting away details allows us to write complex

code while suppressing details, so that we are not overwhelmed by
that complexity

6.s061 Lecture 7

a = 3.14*2.2*2.2 pi = 3.14
r = 2.2
area = pi*r**2

calculate the area of a circle
41

BIG IDEA
Make code easy to
create
modify
maintain
understand

6.s061 Lecture 7
42

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

43

https://ocw.mit.edu
https://ocw.mit.edu/terms

DECOMPOSITION,
ABSTRACTION, FUNCTIONS

(download slides and .py files to follow along)

6.100L Lecture 7
Ana Bell

1

AN EXAMPLE: the SMARTPHONE

 A black box, and can be viewed in terms of
 Its inputs
 Its outputs
 How outputs are related to inputs, without any

knowledge of its internal workings
 Implementation is “opaque” (or black)

6.100L Lecture 7
2

AN EXAMPLE: the SMARTPHONE
ABSTRACTION

 User doesn’t know the details of how it
works
 We don’t need to know how something works in

order to know how to use it

 User does know the interface
 Device converts a sequence of screen touches and

sounds into expected useful functionality

 Know relationship between input and output

6.100L Lecture 7

3

ABSTRACTION ENABLES
DECOMPOSITION

 100’s of distinct parts

 Designed and made by different
companies
 Do not communicate with each other,

other than specifications for components
 May use same subparts as others

 Each component maker has to know
how its component interfaces to other
components

 Each component maker can solve sub-
problems independent of other parts,
so long as they provide specified inputs

 True for hardware and for software
6.100L Lecture 7

4

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj2vrKv4LHgAhWkct8KHcpVCF4QjRx6BAgBEAU&url=https://www.dreamstime.com/stock-illustration-iphone-s-components-disassembled-repair-smartphone-phone-vector-clipart-isolated-image75657962&psig=AOvVaw3dOIbKMbSdWsU6P8ZyYmrR&ust=1549908249650533
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj2vrKv4LHgAhWkct8KHcpVCF4QjRx6BAgBEAU&url=https://www.dreamstime.com/stock-illustration-iphone-s-components-disassembled-repair-smartphone-phone-vector-clipart-isolated-image75657962&psig=AOvVaw3dOIbKMbSdWsU6P8ZyYmrR&ust=1549908249650533

BIG IDEA
Apply
abstraction (black box) and
decomposition (split into self-contained parts)

to programming!

6.100L Lecture 7
5

SUPPRESS DETAILS with
ABSTRACTION

 In programming, want to think of piece of code as black box
 Hide tedious coding details from the user
 Reuse black box at different parts in the code (no copy/pasting!)

 Coder creates details, and designs interface
 User does not need or want to see details

6.100L Lecture 7
6

SUPPRESS DETAILS with
ABSTRACTION

 Coder achieves abstraction with a function (or procedure)
 You’ve already been using functions!
 A function lets us capture code within a black box

 Once we create function, it will produce an output from inputs, while
hiding details of how it does the computation

6.100L Lecture 7

max(1,4)
abs(-3)
len("mom's spaghetti")

7

SUPPRESS DETAILS with
ABSTRACTION

 A function has specifications, captured using docstrings
 Think of a docstring as “contract” between coder and user:

 If user provides input that satisfies stated conditions, function will
produce output according to specs, including indicated side effects

 Not typically enforced in Python (we’ll see assertions later), but user
relies on coder’s work satisfying the contract

6.100L Lecture 7

abs(-3)

8

CREATE STRUCTURE with
DECOMPOSITION

 Given the idea of black box abstraction, use it to divide code
into modules that are:
 Self-contained
 Intended to be reusable

 Modules are used to:
 Break up code into logical pieces
 Keep code organized
 Keep code coherent (readable and understandable)

 In this lecture, achieve decomposition with functions
 In a few lectures, achieve decomposition with classes
 Decomposition relies on abstraction to enable construction of

complex modules from simpler ones

6.100L Lecture 7
9

FUNCTIONS

 Reusable pieces of code, called functions or procedures
 Capture steps of a computation so that we can use with any

input
 A function is just some code written in a special, reusable way

6.100L Lecture 7
10

FUNCTIONS

 Defining a function tells Python some code now exists in
memory
 Functions are only useful when they are run (“called” or

“invoked”)
 You write a function once but can run it many times!
 Compare to code in a file

 It doesn’t run when you load the file
 It runs when you hit the run button

6.100L Lecture 7
11

FUNCTION CHARACTERISTICS

 Has a name
 (think: variable bound to a function object)

 Has (formal) parameters (0 or more)
 The inputs

 Has a docstring (optional but recommended)
 A comment delineated by """ (triple quotes) that provides a

specification for the function – contract relating output to input

 Has a body, a set of instructions to execute when function is
called
 Returns something

 Keyword return

6.100L Lecture 7
12

HOW to WRITE a FUNCTION

6.100L Lecture 7

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

if i%2 == 0:

return True

else:

return False

13

HOW TO THINK ABOUT WRITING
A FUNCTION

 What is the problem?
 Given an int, call it i, want to know if it is even
 Use this to write the function name and specs

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""

14

HOW TO THINK ABOUT WRITING
A FUNCTION

 How to solve the problem?
 Can check that remainder when divided by 2 is 0
 Think about what value you need to give back

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
if i%2 == 0:

return True
else:

return False

15

HOW TO THINK ABOUT WRITING
A FUNCTION

 Can you make the code cleaner?
 i%2 is a Boolean that evaluates to True/False already

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
return i%2 == 0

16

BIG IDEA
At this point, all we’ve
done is make a function
object

6.100L Lecture 7
17

HOW TO CALL (INVOKE) A
FUNCTION

is_even(3)
is_even(8)

 That’s all!

6.100L Lecture 7
18

HOW TO CALL (INVOKE) A
FUNCTION

is_even(3)
is_even(8)

 That’s all!

6.100L Lecture 7
19

ALL TOGETHER IN A FILE

 This code might be in one file

def is_even(i):
return i%2 == 0

is_even(3)

6.100L Lecture 7
20

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

def is_even(i):
return i%2 == 0

is_even(3)

6.100L Lecture 7
21

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

 Python executes expressions in the body of the function
 return 3%2 == 0

def is_even(i):
return i%2 == 0

is_even(3)

6.100L Lecture 7
22

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

def is_even(i):
return i%2 == 0

is_even(3)
print(is_even(3))

6.100L Lecture 7
23

BIG IDEA
A function’s code
only runs when you
call (aka invoke) the function

6.100L Lecture 7
24

YOU TRY IT!
 Write code that satisfies the following specs
def div_by(n, d):

""" n and d are ints > 0

Returns True if d divides n evenly and False otherwise """

Test your code with:
 n = 10 and d = 3
 n = 195 and d = 13

6.100L Lecture 7
25

Program Scope

a

b

c

a = 3
b = 4
c = a+b

ZOOMING OUT
(no functions)

6.100L Lecture 7

3

4

7

26

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.fstoys.com%2Fbuy%2Fhapee5568%2Fnature-fun-adjustable-telescope&psig=AOvVaw2xl9xPGN7gtzvnGQVjnuFM&ust=1613072004139000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOC3t9CH4O4CFQAAAAAdAAAAABAR

Program Scope

is_even

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)
b = is_even(10)
c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

This is me telling my black box to do
something

27

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.fstoys.com%2Fbuy%2Fhapee5568%2Fnature-fun-adjustable-telescope&psig=AOvVaw2xl9xPGN7gtzvnGQVjnuFM&ust=1613072004139000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOC3t9CH4O4CFQAAAAAdAAAAABAR

Program Scope

is_even

a

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)
b = is_even(10)
c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

28

Program Scope

is_even

a

b

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)
b = is_even(10)
c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

True

29

Program Scope

is_even

a

b

c

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)
b = is_even(10)
c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

True

True

30

INSERTING FUNCTIONS IN CODE

 Remember how expressions are replaced with the value?
 The function call is replaced with the return value!

print("Numbers between 1 and 10: even or odd")

for i in range(1,10):

if is_even(i):

print(i, "even")

else:

print(i, "odd")

6.100L Lecture 7
31

ANOTHER EXAMPLE

 Suppose we want to add all the odd integers between (and
including) a and b

 What is the input?
 Values for a and b

 What is the output?
 The sum_of_odds

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

32

BIG IDEA

Don’t write code right
away!

6.100L Lecture 7
33

PAPER FIRST

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 Systematically solve

the example

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

34

SIMPLE TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 4

 sum_of_odds should be 3

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b
35

MORE COMPLEX TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 7

 sum_of_odds should be 15

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 7

a b

4 5 6

36

SOLVE SIMILAR PROBLEM

 Start by looking at each number between (and including) a and b
 A similar problem that is

easier that you know
how to do?
 Add ALL numbers between

(and including) a and b
 Start with this

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b

37

CHOOSE BIG-PICTURE STRUCTURE

 Add ALL numbers between
(and including) a and b
 It’s a loop

 while or for?
 Your choice

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b

38

WRITE the LOOP
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a
while i <= b:

do something

i += 1
return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):
do something

return sum_of_odds

39

DO the SUMMING
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a

while i <= b:

sum_of_odds += i
i += 1

return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):

sum_of_odds += i
return sum_of_odds

40

INITIALIZE the SUM
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0
i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

def sum_odd(a, b):

sum_of_odds = 0
for i in range(a, b):

sum_of_odds += i

return sum_of_odds

41

TEST!
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4))

42

WEIRD RESULTS…
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4))

5 9
43

DEBUG! aka ADD PRINT STATEMENTS
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

5 9

2 2
3 5

2 2
3 5
4 9

44

FIX for LOOP END INDEX
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):
sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

9 9
45

ADD IN THE ODD PART!

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:
sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:
sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

3 3
46

BIG IDEA

Solve a simpler problem
first.
Add functionality to the code later.

6.100L Lecture 7
47

TRY IT ON ANOTHER
EXAMPLE

for LOOP while LOOP

6.100L Lecture 7

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,7))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,7))

15 15

2 3 7

a b

4 5 6

48

PYTHON TUTOR

 Also a great debugging tool

6.100L Lecture 7
49

BIG IDEA

Test code often.
Use prints to debug.

6.100L Lecture 7
50

YOU TRY IT!
 Write code that satisfies the following specs
def is_palindrome(s):

""" s is a string
Returns True if s is a palindrome and False otherwise
"""

For example:
 If s = "222" returns True
 If s = "2222" returns True
 If s = "abc" returns False

6.100L Lecture 7
51

SUMMARY

 Functions allow us to suppress detail from a user
 Functions capture computation within a black box
 A programmer writes functions with

 0 or more inputs
 Something to return

 A function only runs when it is called
 The entire function call is replaced with the return value

 Think expressions! And how you replace an entire expression with the
value it evaluates to.

6.100L Lecture 7
52

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

53

https://ocw.mit.edu
https://ocw.mit.edu/terms

FUNCTIONS as OBJECTS
(download slides and .py files to follow along)

6.100L Lecture 8

Ana Bell

1

FUNCTION FROM LAST LECTURE

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even and False otherwise

"""

return i%2 == 0

 A function always returns something

6.100L Lecture 8

2

WHAT IF THERE IS
NO return KEYWORD

def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given
 Represents the absence of a value

 If invoked in shell, nothing is printed

 No static semantic error generated

6.100L Lecture 8

3

def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

return None

6.100L Lecture 8

4

YOU TRY IT!
 What is printed if you run this code as a file?
def add(x,y):

return x+y

def mult(x,y):

print(x*y)

add(1,2)

print(add(2,3))

mult(3,4)

print(mult(4,5))

6.100L Lecture 8

5

return vs. print

6.100L Lecture 8

 return only has meaning
inside a function

 only one return executed
inside a function

 code inside function, but
after return statement,
not executed

 has a value associated
with it, given to function
caller

 print can be used outside
functions

 can execute many print
statements inside a function

 code inside function can be
executed after a print
statement

 has a value associated with
it, outputted to the console

 print expression itself returns
None value

6

YOU TRY IT!
 Fix the code that tries to write this function
def is_triangular(n):

""" n is an int > 0
Returns True if n is triangular, i.e. equals a continued
summation of natural numbers (1+2+3+...+k), False otherwise """
total = 0
for i in range(n):

total += i
if total == n:

print(True)
print(False)

6.100L Lecture 8

7

FUNCTIONS SUPPORT
MODULARITY

 Here is our bisection square root method as a function

6.100L Lecture 8

def bisection_root(x):

epsilon = 0.01

low = 0

high = x

ans = (high + low)/2.0

while abs(ans**2 - x) >= epsilon:

if ans**2 < x:

low = ans

else:

high = ans

ans = (high + low)/2.0

print(ans, 'is close to the root of', x)

return ans

Initialize variables

iterate

return result

guess not close enough

new value for guess

update low or high,
depends on guess too
small or too large

8

FUNCTIONS SUPPORT
MODULARITY

 Call it with different values

print(bisection_root(4))

print(bisection_root(123))

 Write a function that calls this one!

6.100L Lecture 8

9

YOU TRY IT!

 Write a function that satisfies the following specs
def count_nums_with_sqrt_close_to (n, epsilon):

""" n is an int > 2

epsilon is a positive number < 1

Returns how many integers have a square root within epsilon of n """

Use bisection_root we already wrote to get an approximation

for the sqrt of an integer.

For example: print(count_nums_with_sqrt_close_to(10, 0.1))

prints 4 because all these integers have a sqrt within 0.1
 sqrt of 99 is 9.949699401855469

 sqrt of 100 is 9.999847412109375

 sqrt of 101 is 10.049758911132812

 sqrt of 102 is 10.099456787109375

6.100L Lecture 8

10

ZOOMING OUT

6.100L Lecture 8

Program Scope

sum_odd

low

high

my_sum

def sum_odd(a, b):
sum_of_odds = 0
for i in range(a, b+1):

if i%2 == 1:
sum_of_odds += i

return sum_of_odds

low = 2
high = 7
my_sum = sum_odd(low, high)

Some
code

function
object

This is my “black box”

One function call

2

7

11

ZOOMING OUT

6.100L Lecture 8

Program Scope

sum_odd

low

high

my_sum

def sum_odd(a, b):
sum_of_odds = 0
for i in range(a, b+1):

if i%2 == 1:
sum_of_odds += i

return sum_of_odds

low = 2
high = 7
my_sum = sum_odd(low, high)

Some
code

function
object

2

7

12

ZOOMING OUT

6.100L Lecture 8

Program Scope

sum_odd

low

high

my_sum

def sum_odd(a, b):
sum_of_odds = 0
for i in range(a, b+1):

if i%2 == 1:
sum_of_odds += i

return sum_of_odds

low = 2
high = 7
my_sum = sum_odd(low, high)

Some
code

function
object

This is my “black box”

15

2

7

15

13

FUNCTION SCOPE

6.100L Lecture 8

14

UNDERSTANDING FUNCTION
CALLS

 How does Python execute a function call?

 How does Python know what value is associated with a variable
name?

 It creates a new environment with every function call!
 Like a mini program that it needs to complete
 The mini program runs with assigning its parameters to some inputs
 It does the work (aka the body of the function)
 It returns a value
 The environment disappears after it returns the value

6.100L Lecture 8

15

ENVIRONMENTS

 Global environment
 Where user interacts with Python interpreter
 Where the program starts out

 Invoking a function creates a new environment (frame/scope)

6.100L Lecture 8

16

VARIABLE SCOPE

 Formal parameters get bound to the value of input parameters
 Scope is a mapping of names to objects
 Defines context in which body is evaluated
 Values of variables given by bindings of names

 Expressions in body of function evaluated wrt this new scope

6.100L Lecture 8

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)y

y

17

Global scope

f

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
after evaluating def

6.100L Lecture 8

Some
code

function
object

This is my “black box”

18

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.fstoys.com%2Fbuy%2Fhapee5568%2Fnature-fun-adjustable-telescope&psig=AOvVaw2xl9xPGN7gtzvnGQVjnuFM&ust=1613072004139000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOC3t9CH4O4CFQAAAAAdAAAAABAR

Global scope

f

x

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
after exec 1st assignment

6.100L Lecture 8

Some
code

3

This is my “black box”

19

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
after f invoked

6.100L Lecture 8

Global scope

f

x

Some
code

f scope

x 3

3

20

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

y = 3

z = f(y)

VARIABLE SCOPE
after f invoked

6.100L Lecture 8

Global scope

f

y

Some
code

f scope

x 3

3

21

VARIABLE SCOPE
eval body of f in f’s scope

6.100L Lecture 8

Global scope

f

x

Some
code

3

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

in f(x): x = 4 printed out

f scope

x 34

22

VARIABLE SCOPE
during return

6.100L Lecture 8

Global scope

f

x

Some
code

3

f scope

x 4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

returns 4

23

VARIABLE SCOPE
after exec 2nd assignment

6.100L Lecture 8

Global scope

f

x

z

Some
code

3

4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)
24

BIG IDEA
You need to know what
expression you are executing
to know the scope you are in.

6.100L Lecture 8

25

ANOTHER SCOPE EXAMPLE

 Inside a function, can access a variable defined outside

 Inside a function, cannot modify a variable defined outside
(can by using global variables, but frowned upon)

 Use the Python Tutor to step through these!

6.100L Lecture 8

def g(y):
print(x)
print(x + 1)

x = 5
g(x)
print(x)

def h(y):
x += 1

x = 5
h(x)
print(x)

def f(y):
x = 1
x += 1
print(x)

x = 5
f(x)
print(x)

2
5

5
6
5

Error

26

FUNCTIONS as
ARGUMENTS

6.100L Lecture 8

27

HIGHER ORDER PROCEDURES

 Objects in Python have a type
 int, float, str, Boolean, NoneType, function

 Objects can appear in RHS of assignment statement
 Bind a name to an object

 Objects
 Can be used as an argument to a procedure
 Can be returned as a value from a procedure

 Functions are also first class objects!
 Treat functions just like the other types

 Functions can be arguments to another function
 Functions can be returned by another function

6.100L Lecture 8

28

OBJECTS IN A PROGRAM

6.100L Lecture 8

def is_even(i):
return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

pi

function
object with
some code

int object 2

float object
3.14285714

is_even

r

my_func

a False

b True

29

BIG IDEA

Everything in Python is
an object.

6.100L Lecture 8

30

FUNCTION AS A PARAMETER

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denominator was 0.")

print(calc(add, 2, 3))

6.100L Lecture 8

31

STEP THROUGH THE CODE

6.100L Lecture 8

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

32

CREATE calc SCOPE

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

33

MATCH FORMAL PARAMS in calc

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

34

FIRST (and only) LINE IN calc

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

35

CREATE SCOPE OF add

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

add scope

36

MATCH FORMAL PARAMS IN add

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

add scope

a

b

2

3

37

EXECUTE LINE OF add

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

add scope

a

b

2

3

returns 5
38

REPLACE FUNC CALL WITH RETURN

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

39

EXECUTE LINE OF calc

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

calc scope

op

x

y

add

2

3

returns 5
40

REPLACE FUNC CALL WITH RETURN

6.100L Lecture 8

def calc(op, x, y):

return op(x,y)

def add(a,b):

return a+b

def div(a,b):

if b != 0:

return a/b

print("Denom was 0.")

res = calc(add, 2, 3)

Program Scope

calc

add

div

res

Some
code

function
object

Some
code

function
object

Some
code

function
object

5

41

YOU TRY IT!
 Do a similar trace with the function call

def calc(op, x, y):
return op(x,y)

def div(a,b):
if b != 0:

return a/b
print("Denom was 0.")

res = calc(div,2,0)

What is the value of res and what gets printed?

6.100L Lecture 8

42

ANOTHER EXAMPLE:
FUNCTIONS AS PARAMS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))
43

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwithbHoiaTnAhXxg3IEHTiYBmgQjRx6BAgBEAQ&url=https://www.reddit.com/r/ProgrammerHumor/comments/a5ggzi/functions/&psig=AOvVaw0-3316RAWOsfqHaxuqy1OA&ust=1580224632076534

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Global scope

func_a

func_b

func_c

Some
code

Some
code

Some
code

func_a scope

44

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Global scope

func_a

func_b

func_c

Some
code

Some
code

Some
code

func_a scope

None

45

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Global scope

func_a

func_b

func_c

Some
code

Some
code

Some
code

46

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_b scope

y 2

None

47

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_b scope

y 2

None

48

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_b scope

y 2

returns 2

None

7

49

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

6.100L Lecture 8

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

None

7

50

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_c scope

f

z

func_b

None

7

6.100L Lecture 8

3

51

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_c scope

f

z

func_b

func_b scope

y

returns 3None

7

6.100L Lecture 8

3

3

3

52

Global scope

func_a

func_b

func_c

FUNCTIONS AS PARAMETERS

def func_a():

print('inside func_a')

def func_b(y):

print('inside func_b')

return y

def func_c(f, z):

print('inside func_c')

return f(z)

print(func_a())

print(5 + func_b(2))

print(func_c(func_b, 3))

Some
code

Some
code

Some
code

func_c scope

f

z

func_b

returns 3

None

7

6.100L Lecture 8

3

3

3

53

YOU TRY IT!
 Write a function that meets these specs.
def apply(criteria,n):

"""

* criteria is a func that takes in a number and returns a bool

* n is an int

Returns how many ints from 0 to n (inclusive) match

the criteria (i.e. return True when run with criteria)

"""

6.100L Lecture 8

54

SUMMARY

 Functions are first class objects
 They have a type
 They can be assigned as a value bound to a name
 They can be used as an argument to another procedure
 They can be returned as a value from another procedure

 Have to be careful about environments
 Main program runs in the global environment
 Function calls each get a new temporary environment

 This enables the creation of concise, easily read code

6.100L Lecture 8

55

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

56

https://ocw.mit.edu
https://ocw.mit.edu/terms

LAMBDA FUNCTIONS,
TUPLES and LISTS

(download slides and .py files to follow along)

6.100L Lecture 9
Ana Bell

1

FROM LAST TIME

def apply(criteria,n):
"""
* criteria: function that takes in a number and returns a bool
* n: an int
Returns how many ints from 0 to n (inclusive) match the
criteria (i.e. return True when run with criteria) """
count = 0
for i in range(n+1):

if criteria(i):
count += 1

return count

def is_even(x):
return x%2==0

print(apply(is_even,10))

6.100L Lecture 9
2

ANONYMOUS FUNCTIONS

 Sometimes don’t want to name functions, especially simple
ones. This function is a good example:

def is_even(x):

return x%2==0

 Can use an anonymous procedure by using lambda

 lambda creates a procedure/function object, but simply does
not bind a name to it

6.100L Lecture 9

lambda x: x%2 == 0

parameter
Body of lambda
Note no return keyword

3

ANONYMOUS FUNCTIONS

 Function call with a named function:

 Function call with an anonymous function as parameter:

 lambda function is one-time use. It can’t be reused because it
has no name!

6.100L Lecture 9

apply(lambda x: x%2 == 0 , 10)

apply(is_even , 10)

4

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9
5

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

6

YOU TRY IT!

do_twice environment

n 3
fn lambda x: x**2

 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

7

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

8

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

lambda x: x**2
environment

x 3
9

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

lambda x: x**2
environment

x 3 Returns 9

9

9

10

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x 9
Returns 81

9

81

11

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

PRINTS 81

do_twice environment

n 3
fn lambda x: x**2

Returns 81

81

12

TUPLES

6.100L Lecture 9
13

A NEW DATA TYPE

 Have seen scalar types: int,float,bool
 Have seen one compound type: string
 Want to introduce more general compound data types

 Indexed sequences of elements, which could themselves be compound
structures

 Tuples – immutable
 Lists – mutable

 Next lecture, will explore ideas of
 Mutability
 Aliasing
 Cloning

6.100L Lecture 9
14

TUPLES

 Indexable ordered sequence of objects
 Objects can be any type – int, string, tuple, tuple of tuples, …

 Cannot change element values, immutable
te = ()

ts = (2,)

t = (2, "mit", 3)

t[0] evaluates to 2
(2,"mit",3) + (5,6)evaluates to a new tuple(2,"mit",3,5,6)
t[1:2] slice tuple, evaluates to ("mit",)
t[1:3] slice tuple, evaluates to ("mit",3)
len(t) evaluates to 3
max((3,5,0)) evaluates 5
t[1] = 4 gives error, can’t modify object

6.100L Lecture 9
15

INDICES AND SLICING

seq = (2,'a',4,(1,2))

print(len(seq)) 4
print(seq[3]) (1,2)
print(seq[-1]) (1,2)
print(seq[3][0]) 1
print(seq[4]) error

print(seq[1]) 'a'
print(seq[-2:] (4,(1,2))
print(seq[1:4:2] ('a',(1,2))
print(seq[:-1]) (2,'a',4)
print(seq[1:3]) ('a',4)

for e in seq: 2
print(e) a

4
(1,2)

6.100L Lecture 9

index: 0 1 2 3

16

TUPLES

 Conveniently used to swap variable values
x = 1 x = 1 x = 1

y = 2 y = 2 y = 2

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

6.100L Lecture 9
17

TUPLES

 Used to return more than one value from a function
def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

both = quotient_and_remainder(10,3)

(quot, rem) = quotient_and_remainder(5,2)

6.100L Lecture 9
18

BIG IDEA
Returning
one object (a tuple)

allows you to return
multiple values (tuple elements)

6.100L Lecture 9
19

YOU TRY IT!
 Write a function that meets these specs:
 Hint: remember how to check if a character is in a string?

def char_counts(s):
""" s is a string of lowercase chars
Return a tuple where the first element is the
number of vowels in s and the second element
is the number of consonants in s """

6.100L Lecture 9
20

VARIABLE NUMBER of
ARGUMENTS

 Python has some built-in functions that take variable number
of arguments, e.g, min
 Python allows a programmer to have same capability,

using * notation
def mean(*args):

tot = 0
for a in args:

tot += a
return tot/len(args)

 numbers is bound to a tuple of the supplied values
 Example:
 mean(1,2,3,4,5,6)

6.100L Lecture 9
21

LISTS

6.100L Lecture 9
22

LISTS

 Indexable ordered sequence of objects
• Usually homogeneous (i.e., all integers, all strings, all lists)
• But can contain mixed types (not common)

 Denoted by square brackets, []
 Mutable, this means you can change values of specific

elements of list

6.100L Lecture 9
23

INDICES and ORDERING

a_list = []

L = [2, 'a', 4, [1,2]]

[1,2]+[3,4] evaluates to [1,2,3,4]
len(L) evaluates to 4
L[0] evaluates to 2
L[2]+1 evaluates to 5
L[3] evaluates to [1,2], another list!
L[4] gives an error
i = 2
L[i-1] evaluates to 'a' since L[1]='a'
max([3,5,0]) evaluates 5

6.100L Lecture 9
24

ITERATING OVER a LIST

6.100L Lecture 9

 Compute the sum of elements of a list
 Common pattern

 Notice
• list elements are indexed 0 to len(L)-1

and range(n) goes from 0 to n-1

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

25

ITERATING OVER a LIST

 Natural to capture iteration over a list inside a function

 Function call list_sum([8,3,5])
 Loop variable i takes on values in the list in order! 8 then 3 then 5
 To help you write code and debug, comment on what the loop var

values are so you don’t get confused!

6.100L Lecture 9

total = 0

for i in L:

total += i

print(total)

def list_sum(L):

total = 0

for i in L:

total += i

return total

i is 8 then 3 then 5

26

LISTS SUPPORT ITERATION

 Because lists are ordered sequences of elements, they naturally
interface with iterative functions

Add the elements of a list Add the length of elements of a list

6.100L Lecture 9

def list_sum(L):

total = 0

for e in L:

total += e

return(total)

list_sum([1,3,5]) 9

def len_sum(L):

total = 0

for s in L:

total += len(s)

return(total)

len_sum(['ab', 'def', 'g']) 6

27

YOU TRY IT!
 Write a function that meets these specs:
def sum_and_prod(L):

""" L is a list of numbers
Return a tuple where the first value is the
sum of all elements in L and the second value
is the product of all elements in L """

6.100L Lecture 9
28

SUMMARY

 Lambda functions are useful when you need a simple function
once, and whose body can be written in one line
 Tuples are indexable sequences of objects

 Can’t change its elements, for ex. can’t add more objects to a tuple
 Syntax is to use ()

 Lists are indexable sequences of objects
 Can change its elements. Will see this next time!
 Syntax is to use []

 Lists and tuples are very similar to strings in terms of
 Indexing,
 Slicing,
 Looping over elements

6.100L Lecture 9
29

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

LISTS, MUTABILITY
(download slides and .py files to follow along)

6.100L Lecture 10
Ana Bell

1

INDICES and ORDERING in LISTS

a_list = []

L = [2, 'a', 4, [1,2]]

len(L) evaluates to 4
L[0] evaluates to 2
L[3] evaluates to [1,2], another list!
[2,'a'] + [5,6] evaluates to [2,'a',5,6]
max([3,5,0]) evaluates to 5
L[1:3] evaluates to ['a', 4]
for e in L loop variable becomes each element in L
L[3] = 10 mutates L to [2,'a',4,10]

6.100L Lecture 10
2

MUTABILITY

6.100L Lecture 10

 Lists are mutable!
 Assigning to an element at an index changes the value
L = [2, 4, 3]

L[1] = 5

 L is now [2, 5, 3]; note this is the same object L

L

[2,4,3][2,5,3]

3

MUTABILITY

6.100L Lecture 10

 Compare
 Making L by mutating an element vs.
 Making t by creating a new object

L = [2, 4, 3]

L[1] = 5

t = (2, 4, 3)

t = (2, 5, 3)

L [2,4,3][2,5,3]

t (2,4,3)

(2,5,3)

x

4

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]

L.append(5) L is now [2,1,3,5]

6.100L Lecture 10

L

[2,1,3][2,1,3,5]

5

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]

L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5]

6

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]

L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

7

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]

L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

None

8

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]

L.append(5) L is now [2,1,3,5]
L.append(5) L is now [2,1,3,5,5]
print(L)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

9

YOU TRY IT!
 What is the value of L1, L2, L3 and L at the end?
L1 = ['re']

L2 = ['mi']

L3 = ['do']

L4 = L1 + L2

L3.append(L4)

L = L1.append(L3)

6.100L Lecture 10
10

BIG IDEA
Some functions mutate
the list and don’t return
anything.
We use these functions for their side effect.

6.100L Lecture 10
11

OPERATION ON LISTS: append

 L = [2,1,3]
L.append(5)

 What is the dot?
• Lists are Python objects, everything in Python is an object
• Objects have data
• Object types also have associated operations
• Access this information by object_name.do_something()
• Equivalent to calling append with arguments L and 5

6.100L Lecture 10
12

YOU TRY IT!
 Write a function that meets these specs:
def make_ordered_list(n):

""" n is a positive int

Returns a list containing all ints in order

from 0 to n (inclusive)

"""

6.100L Lecture 10
13

YOU TRY IT!
 Write a function that meets the specification.
def remove_elem(L, e):

"""

L is a list

Returns a new list with elements in the same order as L

but without any elements equal to e.

"""

L = [1,2,2,2]

print(remove_elem(L, 2)) # prints [1]

6.100L Lecture 10
14

STRINGS to LISTS

 Convert string to list with list(s)
 Every character from s is an element in a list

 Use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

6.100L Lecture 10

s = "I<3 cs &u?" s is a string
L = list(s) L is ['I','<','3',' ','c','s',' ','&','u','?']

L1 = s.split(' ') L1 is ['I<3','cs','&u?']
L2 = s.split('<') L2 is ['I', '3 cs &u?']

15

LISTS to STRINGS

 Convert a list of strings back to string
 Use ''.join(L) to turn a list of strings into a bigger string
 Can give a character in quotes to add char between every

element

6.100L Lecture 10

L = ['a','b','c'] L is a list
A = ''.join(L) A is "abc"
B = '_'.join(L) B is "a_b_c"
C = ''.join([1,2,3]) an error
C = ''.join(['1','2','3'] C is "123" a string!

16

YOU TRY IT!
 Write a function that meets these specs:
def count_words(sen):

""" sen is a string representing a sentence

Returns how many words are in s (i.e. a word is a

a sequence of characters between spaces. """

print(count_words("Hello it's me"))

6.100L Lecture 10
17

A FEW INTERESTING LIST
OPERATIONS

 Add an element to end of list with L.append(element)
 mutates the list

 sort()
 L = [4,2,7]

L.sort()

 Mutates L

 reverse()
 L = [4,2,7]

L.reverse()

 Mutates L

 sorted()
 L = [4,2,7]

 L_new = sorted(L)

 Returns a sorted version of L (no mutation!)

6.100L Lecture 10
18

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L

[9,6,0,3][9,6,0,3,5]

19

[9,6,0,3,5]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a
20

[0,3,5,6,9][9,6,0,3,5]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a

b
None

21

[0,3,5,6,9][9,6,5,3,0]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a

b
None

22

YOU TRY IT!
 Write a function that meets these specs:
def sort_words(sen):

""" sen is a string representing a sentence

Returns a list containing all the words in sen but

sorted in alphabetical order. """

print(sort_words("look at this photograph"))

6.100L Lecture 10
23

BIG IDEA

Functions with side
effects mutate inputs.
You can write your own!

6.100L Lecture 10
24

 Let’s write a function that mutates the input
 Example: square every element of a list, mutating original list

 Solutions (we’ll go over option 2, try the others on your own!):
 Option 1: Make a new variable representing the index, initialized to 0

before the loop and incremented by 1 in the loop.
 Option 2: Loop over the index not the element, and use L[index] to get

the element
 Option 3: Use enumerate in the for loop (I leave this option to you to

look up). i.e. for i,e in enumerate(L)

LISTS SUPPORT ITERATION

6.100L Lecture 10

def square_list(L):

for elem in L:

?? How to do L[index] = the square ??

?? elem is an element in L, not the index :(

25

LISTS SUPPORT ITERATION

 Example: square every element of a list, mutating original list

 Note, no return!

6.100L Lecture 10

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

26

 Example: square every element of a list, mutating original list

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

TRACE the CODE with an
EXAMPLE

6.100L Lecture 10

i is 0: L is mutated to [4, 3, 4]
i is 1: L is mutated to [4, 9, 4]
i is 2: L is mutated to [4, 9, 16]

Suppose L is [2,3,4]

27

 Example: square every element of a list, mutating original list

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

Lin = [2,3,4]

print("before fcn call:",Lin) # prints [2,3,4]

square_list(Lin)

print("after fcn call:",Lin) # prints [4,9,16]

TRACE the CODE with an
EXAMPLE

6.100L Lecture 10
28

BIG IDEA

Functions that mutate
the input likely…..
Iterate over len(L) not L.
Return None, so the function call does not need to be saved.

6.100L Lecture 10
29

MUTATION

 Lists are mutable structures
 There are many advantages to being able to change a portion

of a list
 Suppose I have a very long list (e.g. of personnel records) and I want to

update one element. Without mutation, I would have to copy the
entire list, with a new version of that record in the right spot. A
mutable structure lets me change just that element

 But, this ability can also introduce unexpected challenges

6.100L Lecture 10
30

TRICKY EXAMPLES OVERVIEW

 TRICKY EXAMPLE 1:
 A loop iterates over indices of L and mutates L each time (adds more

elements).

 TRICKY EXAMPLE 2:
 A loop iterates over L’s elements directly and mutates L each time (adds

more elements).

 TRICKY EXAMPLE 3:
 A loop iterates over L’s elements directly but reassigns L to a new

object each time

 TRICKY EXAMPLE 4 (next time):
 A loop iterates over L’s elements directly and mutates L by removing

elements.

6.100L Lecture 10
31

TRICKY EXAMPLE 1: append

 Range returns something that behaves like a tuple
(but isn’t – it returns an iterable)
 Returns the first element, and an iteration method by which

subsequent elements are generated as needed

range(4) kind of like tuple (0,1,2,3)
range(2,9,2) kind of like tuple (2,4,6,8)

L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)

6.100L Lecture 10

1st time: L is [1, 2, 3, 4, 0]
2nd time: L is [1, 2, 3, 4, 0, 1]
3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]
32

TRICKY EXAMPLE 1: append

L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)

6.100L Lecture 10

[1,2,3,4]

L

[1,2,3,4,0][1,2,3,4,0,1]

(0,1,2,3)

i

[1,2,3,4,0,1,2][1,2,3,4,0,1,2,3]

1st time: L is [1, 2, 3, 4, 0]
2nd time: L is [1, 2, 3, 4, 0, 1]
3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]

33

TRICKY EXAMPLE 2: append

Looks similar but …
L = [1,2,3,4]

i = 0

for e in L:

L.append(i)

i += 1

print(L)

6.100L Lecture 10

1st time: L is [1, 2, 3, 4, 0]

2nd time: L is [1, 2, 3, 4, 0, 1]

3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]
NEVER STOPS!

[1,2,3,4]

L

e

[1,2,3,4,0][1,2,3,4,0,1]

i

012

In previous example, L was accessed at
onset to create a range iterable; in this
example, the loop is directly accessing
indices into L

[1,2,3,4,0,1,2]

3

34

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

6.100L Lecture 10
35

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1.extend([0,6]) mutate L1 to [2,1,3,0,6]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

6.100L Lecture 10
36

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1.extend([0,6]) mutate L1 to [2,1,3,0,6]

L2.extend([[1,2],[3,4]]) mutates L2 to [4,5,6,[1,2],[3,4]]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

6.100L Lecture 10

[4,5,6,[1,2],[3,4]]

37

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

3rd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

4th time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

38

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

39

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

40

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,]

3rd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4] 41

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,]

[1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,

1,2,3,4,1,2,3,4,]

4th time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

42

EMPTY OUT A LIST AND CHECKING
THAT IT’S THE SAME OBJECT

 You can mutate a list to remove all its elements
 This does not make a new empty list!

 Use L.clear()
 How to check that it’s the same object in memory?

 Use the id() function
 Try this in the console

6.100L Lecture 10

>>> L = [4,5,6]

>>> id(L)

>>> L.append(8)

>>> id(L)

>>> L.clear()
>>> id(L)

>>> L = [4,5,6]

>>> id(L)

>>> L.append(8)

>>> id(L)

>>> L = []
>>> id(L)

43

SUMMARY

 Lists and tuples provide a way to organize data that naturally
supports iterative functions
 Tuples are immutable (like strings)

 Tuples are useful when you have data that doesn’t need to change.
e.g. (latitude, longitude) or (page #, line #)

 Lists are mutable
 You can modify the object by changing an element at an index
 You can modify the object by adding elements to the end
 Will see many more operations on lists next time
 Lists are useful in dynamic situations.

e.g. a list of daily top 40 songs or a list of recently watched movies

6.100L Lecture 10
44

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

45

https://ocw.mit.edu
https://ocw.mit.edu/terms

ALIASING,
CLONING

(download slides and .py files to follow along)

6.100L Lecture 11
Ana Bell

1

MAKING A COPY OF THE LIST

 Can make a copy of a list object by duplicating all elements
(top-level) into a new list object
 Lcopy = L[:]

 Equivalent to looping over L and appending each element to Lcopy
 This does not make a copy of elements that are lists (will see how to do

this at the end of this lecture)

6.100L Lecture 11

Loriginal = [4,5,6]
Lnew = Loriginal[:]

Loriginal [4,5,6]

Lnew [4,5,6]

2

YOU TRY IT!
 Write a function that meets the specification.
 Hint. Make a copy to save the elements. The use L.clear() to

empty out the list and repopulate it with the ones you’re
keeping.

def remove_all(L, e):

"""

L is a list

Mutates L to remove all elements in L that are equal to e

Returns None

"""

L = [1,2,2,2]

remove_all(L, 2)

print(L) # prints [1]

6.100L Lecture 11
3

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]

a = L.pop() returns 0 and mutates L = [1,3,7]
del(L[1]) mutates L = [1,3,7,0]

OPERATION ON LISTS: remove

 Delete element at a specific index with del(L[index])
 Remove element at end of list with L.pop(), returns the

removed element (can also call with specific index:
L.pop(3))
 Remove a specific element with L.remove(element)

• Looks for the element and removes it (mutating the list)
• If element occurs multiple times, removes first occurrence
• If element not in list, gives an error

6.100L Lecture 11

L = [2,1,3,6,3,7,0] # do below in order

4

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 Rewrite the code to remove e as long as we still had it in the list
 It works well!

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
while e in L:

L.remove(e)

6.100L Lecture 11
5

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 What if the code was this:

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11
6

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

7

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

8

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

[1,2,2]

9

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2]

elem

10

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 It’s not correct! We removed items as we iterated over the list!

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2]

elem

[1,2]

11

TRICKY EXAMPLES OVERVIEW

 TRICKY EXAMPLE 1:
 A loop iterates over indices of L and mutates L each time (adds more

elements).

 TRICKY EXAMPLE 2:
 A loop iterates over L’s elements directly and mutates L each time (adds

more elements).

 TRICKY EXAMPLE 3:
 A loop iterates over L’s elements directly but reassigns L to a new

object each time

 TRICKY EXAMPLE 4:
 A loop iterates over L’s elements directly and mutates L by removing

elements.

6.100L Lecture 11
12

TRICKY EXAMPLE 4
PYTHON TUTOR LINK to see step-by-step

 Want to mutate L1 to remove any elements that are also in L2
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 L1 is [20,30,40] not [30,40] Why?
 You are mutating a list as you are iterating over it
 Python uses an internal counter. Tracks of index in the loop over list L1
 Mutating changes the list but Python doesn’t update the counter
 Loop never sees element 20

6.100L Lecture 11
13

https://pythontutor.com/visualize.html#code=def%20remove_dups%28L1,%20L2%29%3A%0A%20%20%20%20for%20e%20in%20L1%3A%0A%20%20%20%20%20%20%20if%20e%20in%20L2%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20L1.remove%28e%29%0A%0AL1%20%3D%20%5B10,%2020,%2030,%2040%5D%0AL2%20%3D%20%5B10,%2020,%2050,%2060%5D%0Aremove_dups%28L1,%20L2%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

14

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

15

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

16

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

17

MUTATION AND ITERATION WITH CLONE
L1_copy = L1[:]

 Make a clone with [:]
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 New version works!
 Iterate over a copy
 Mutate original list, not the copy
 Indexing is now consistent

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

18

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

19

[20,30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

20

[20,30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

21

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

22

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

23

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

24

ALIASING

 City may be known by many names
 Attributes of a city

 Small, tech-savvy

 All nicknames point to the same city
• Add new attribute to one nickname …

6.100L Lecture 11

Boston
The Hub
Beantown
Athens of America

Boston small tech-savvy

The Hub small tech-savvy

Beantown small tech-savvy

snowy

snowy

snowy

… all the aliases refer to the old attribute and all the new ones

25

MUTATION AND ITERATION WITH ALIAS
L1_copy = L1

 Assignment (= sign) on mutable obj creates an alias, not a clone

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 Using a simple assignment without making a copy
 Makes an alias for list (same list object referenced by another name)
 It’s like iterating over L itself, it doesn’t work!

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

26

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

[20,30,40]

L1_copy

27

BIG IDEA
When you pass a list as a
parameter to a function,
you are making an alias.
The actual parameter (from the function call) is an alias for
the formal parameter (from the function definition).

6.100L Lecture 11
28

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

La = [10, 20, 30, 40]
Lb = [10, 20, 50, 60]
remove_dups(La, Lb)
print(La) La [10,20,30,40]

Lb [10,20,50,60]

e

[20,30,40]

L1_copy

L1

L2

29

ALIASES,
SHALLOW COPIES, AND
DEEP COPIES WITH
MUTABLE ELEMENTS

6.100L Lecture 11
30

CONTROL COPYING

 Assignment just creates a new pointer to same object
old_list = [[1,2],[3,4],[5,'foo']]

new_list = old_list

new_list[2][1] = 6

print("New list:", new_list)

print("Old list:", old_list)

 So mutating one object changes the other

6.100L Lecture 11

old_list

new_list

[, ,]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[1,2] [3,4] [5,‘foo’][5,6]

31

CONTROL COPYING

 Suppose we want to create a copy of a list, not just a shared
pointer
 Shallow copying does this at the top level of the list

 Equivalent to syntax [:]
 Any mutable elements are NOT copied

 Use this when your list contains immutable objects only
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
32

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.0001 LECTURE 5

old_list

new_list
[, ,]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[, ,]

[1,2] [3,4] [5,6]

33

CONTROL COPYING

 Now we mutate the top level structure
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
34

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)
New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6],[7,8]]

6.0001 LECTURE 5

old_list

new_list
[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

35

CONTROL COPYING

 But if we change an element in one of the sub-structures, they
are shared!
 If your elements are not mutable then this is not a problem
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
36

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,9],[5,6]]

6.0001 LECTURE 5

old_list

new_list
[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

Old list: [[1,2],[3,9],[5,6],[7,8]]

[3,9]

37

CONTROL COPYING

 If we want all structures to be new copies, we need a deep
copy
 Use deep copy when your list might have mutable elements to

ensure every structure at every level is copied
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
38

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,9],[5,6],[7,8]]

old_list

new_list

[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

[3,9]

[1,2] [3,4] [5,6]

39

LISTS in MEMORY

 Separate the idea of the object vs. the name we give an object
 A list is an object in memory
 Variable name points to object

 Lists are mutable and behave differently than immutable types
 Using equal sign between mutable objects creates aliases

 Both variables point to the same object in memory
 Any variable pointing to that object is affected by mutation of object,

even if mutation is by referencing another name

 If you want a copy, you explicitly tell Python to make a copy
 Key phrase to keep in mind when working with lists is side

effects, especially when dealing with aliases – two names
pointing to the same structure in memory
 Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/
6.100L Lecture 11

40

http://www.pythontutor.com/

WHY LISTS and TUPLES?

 If mutation can cause so many problems, why do we even
want to have lists, why not just use tuples?
 Efficiency – if processing very large sequences, don’t want to have

to copy every time we change an element

 If lists basically do everything that tuples do, why not just
have lists?
 Immutable structures can be very valuable in context of other

object types
 Don’t want to accidentally have other code mutate some

important data, tuples safeguard against this
 They can be a bit faster

6.100L Lecture 11
41

AT HOME TRACING
EXAMPLES SHOWCASING
ALIASING AND CLONING

6.100L Lecture 11
42

ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect

6.100L Lecture 11
43

ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect

6.100L Lecture 11
44

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
45

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
46

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
47

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
48

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
49

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
50

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
51

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
52

LISTS OF LISTS
OF LISTS OF….

 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
53

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

54

https://ocw.mit.edu
https://ocw.mit.edu/terms

LIST COMPREHENSION,
FUNCTIONS AS OBJECTS,

TESTING, DEBUGGING
(download slides and .py files to follow along)

6.100L Lecture 12

Ana Bell

1

LIST COMPREHENSIONS

6.100L Lecture 12

2

LIST COMPREHENSIONS

 Applying a function to every element of a sequence, then
creating a new list with these values is a common concept
 Example:

def f(L):
Lnew = []
for e in L:

Lnew.append(e**2)
return Lnew

 Python provides a concise one-liner way to do this, called a list
comprehension
 Creates a new list
 Applies a function to every element of another iterable
 Optional, only apply to elements that satisfy a test

[expression for elem in iterable if test]
6.100L Lecture 12

3

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]

4

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew

Lnew = [e**2 for e in L]

5

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

6

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

7

LIST COMPREHENSIONS

 Create a new list, by applying a function to every element of
another iterable that satisfies a test

6.100L Lecture 12

def f(L):
Lnew = []
for e in L:
Lnew.append(e**2)

return Lnew

def f(L):
Lnew = []
for e in L:
if e%2==0:
Lnew.append(e**2)

return Lnew
Lnew = [e**2 for e in L if e%2==0]

Lnew = [e**2 for e in L]

8

LIST COMPREHENSIONS

[expression for elem in iterable if test]
 This is equivalent to invoking this function (where expression is

a function that computes that expression)
def f(expr, old_list, test = lambda x: True):

new_list = []
for e in old_list:

if test(e):
new_list.append(expr(e))

return new_list

6.100L Lecture 12

[e**2 for e in range(6)] [0, 1, 4, 9, 16, 25]

[e**2 for e in range(8) if e%2 == 0] [0, 4, 16, 36]
[[e,e**2] for e in range(4) if e%2 != 0] [[1,1], [3,9]]

9

YOU TRY IT!
 What is the value returned by this expression?

 Step1: what are all values in the sequence
 Step2: which subset of values does the condition filter out?
 Step3: apply the function to those values

[len(x) for x in ['xy', 'abcd', 7, '4.0'] if type(x) == str]

6.100L Lecture 12

10

FUNCTIONS: DEFAULT
PARAMETERS

6.100L Lecture 12

11

SQUARE ROOT with BISECTION

def bisection_root(x):
epsilon = 0.01
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x:
low = guess

else:
high = guess

guess = (high + low)/2.0
return guess

print(bisection_root(123))

6.100L Lecture 12

12

ANOTHER PARAMETER

Motivation: want a more accurate answer
def bisection_root(x)can be improved

 Options?
 Change epsilon inside function (all function calls are affected)
 Use an epsilon outside function (global variables are bad)
 Add epsilon as an argument to the function

6.100L Lecture 12

13

epsilon as a PARAMETER

def bisection_root(x, epsilon):
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x:
low = guess

else:
high = guess

guess = (high + low)/2.0
return guess

print(bisection_root(123, 0.01))

6.100L Lecture 12

14

KEYWORD PARAMETERS &
DEFAULT VALUES

def bisection_root(x, epsilon)can be improved

 We added epsilon as an argument to the function
 Most of the time we want some standard value, 0.01
 Sometimes, we may want to use some other value

 Use a keyword parameter aka a default parameter

6.100L Lecture 12

15

Epsilon as a KEYWORD
PARAMETER

def bisection_root(x, epsilon=0.01):
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x:
low = guess

else:
high = guess

guess = (high + low)/2.0
return guess

print(bisection_root(123))
print(bisection_root(123, 0.5))

6.100L Lecture 12

16

RULES for KEYWORD PARAMETERS

 In the function definition:
 Default parameters must go at the end

 These are ok for calling a function:
 bisection_root_new(123)
 bisection_root_new(123, 0.001)
 bisection_root_new(123, epsilon=0.001)
 bisection_root_new(x=123, epsilon=0.1)
 bisection_root_new(epsilon=0.1, x=123)

 These are not ok for calling a function:
 bisection_root_new(epsilon=0.001, 123) #error
 bisection_root_new(0.001, 123) #no error but wrong

6.100L Lecture 12

17

FUNCTIONS RETURNING
FUNCTIONS

6.100L Lecture 12

18

OBJECTS IN A PROGRAM

6.100L Lecture 12

def is_even(i):
return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

pi

function
object
named
is_even

int object 2

float object
3.14285714

is_even

r

my_func

a False

b True

19

FUNCTIONS CAN RETURN
FUNCTIONS

def make_prod(a):

def g(b):

return a*b

return g

6.100L Lecture 12

val = make_prod(2)(3)

print(val)

doubler = make_prod(2)

val = doubler(3)

print(val)

20

SCOPE DETAILS FOR WAY 1

6.100L Lecture 12

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)
print(val)

21

SCOPE DETAILS FOR WAY 1

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)

print(val)

22

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)

print(val)

g

NOTE: definition
of g is done
within scope of
make_prod, so
binding of g is
within that
frame/scope

Since g is bound
in this frame,
cannot access it
by evaluation in
global frame

g can only be
accessed within
call to
make_prod, and
each call will
create a new,
internal g

23

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)

print(val)

Returns pointer
to g code

gg’s
code!

Evaluating make_prod(2) has
returned an anonymous procedure

24

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)

print(val)

g scope

b
3

g’s
code!

25

SCOPE DETAILS FOR WAY 1

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

val = make_prod(2)(3)

print(val)

g scope

b
3

6

6val

g’s
code!

How does g get value for a?
Interpreter can move up hierarchy of frames to see both b and a values

Internal procedure only
accessible within scope from
parent procedure’s call

26

SCOPE DETAILS FOR WAY 2

6.100L Lecture 12

def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)

27

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)

g’s
code!

gdoubler

SCOPE DETAILS FOR WAY 2

28

make_prod
scope

a

Some
code

2

6.100L Lecture 12

Global scope

make_prod Some
code

def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)

g’s
code!

gdoubler

SCOPE DETAILS FOR WAY 2

29

SCOPE DETAILS FOR WAY 2

make_prod
scope

a

g Some
code

2

6.100L Lecture 12

Global scope

make_prod

doubler

val

Some
code

def make_prod(a):
def g(b):

return a*b
return g

doubler = make_prod(2)
val = doubler(3)
print(val)

g’s
code!

doubler scope

b 3

6

Returns value

6

30

WHY BOTHER RETURNING
FUNCTIONS?

 Code can be rewritten without returning function objects

 Good software design
 Embracing ideas of decomposition, abstraction
 Another tool to structure code

 Interrupting execution
 Example of control flow
 A way to achieve partial execution and use result somewhere else

before finishing the full evaluation

6.100L Lecture 12

31

TESTING and
DEBUGGING

6.100L Lecture 12

32

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.100L Lecture 12

33

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING

 From the start, design code to ease this part

 Break program up into modules that can be tested and
debugged individually

 Document constraints on modules
• What do you expect the input to be?
• What do you expect the output to be?

 Document assumptions behind code design

6.100L Lecture 12

34

WHEN ARE YOU READY TO TEST?

 Ensure code runs
• Remove syntax errors
• Remove static semantic errors
• Python interpreter can usually find these for you

 Have a set of expected results
• An input set
• For each input, the expected output

6.100L Lecture 12

35

CLASSES OF TESTS

Unit testing
• Validate each piece of program
• Testing each function separately

 Regression testing
• Add test for bugs as you find them
• Catch reintroduced errors that were previously

fixed

 Integration testing
• Does overall program work?
• Tend to rush to do this

6.100L Lecture 12

36

TESTING APPROACHES

 Intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 If no natural partitions, might do random testing
• Probability that code is correct increases with more tests
• Better options below

 Black box testing
• Explore paths through specification

 Glass box testing
• Explore paths through code

6.100L Lecture 12

37

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns res such that x-eps <= res*res <= x+eps """

 Designed without looking at the code

 Can be done by someone other than the implementer to
avoid some implementer biases
 Testing can be reused if implementation changes

 Paths through specification
• Build test cases in different natural space partitions
• Also consider boundary conditions (empty lists, singleton list, large

numbers, small numbers)

BLACK BOX TESTING

6.100L Lecture 12

38

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

CASE x eps
boundary 0 0.0001
perfect square 25 0.0001
less than 1 0.05 0.0001
irrational square root 2 0.0001
extremes 2 1.0/2.0**64.0
extremes 1.0/2.0**64.0 1.0/2.0**64.0
extremes 2.0**64.0 1.0/2.0**64.0
extremes 1.0/2.0**64.0 2.0**64.0
extremes 2.0**64.0 2.0**64.0

6.100L Lecture 12

39

GLASS BOX TESTING

 Use code directly to guide design of test cases

 Called path-complete if every potential path through
code is tested at least once

 What are some drawbacks of this type of testing?
• Can go through loops arbitrarily many times
• Missing paths

 Guidelines
• Branches
• For loops
• While loops

6.100L Lecture 12

40

GLASS BOX TESTING

def abs(x):
""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

 Aa path-complete test suite could miss a bug
 Path-complete test suite: 2 and -2

 But abs(-1) incorrectly returns -1

 Should still test boundary cases

6.100L Lecture 12

41

DEBUGGING

 Once you have discovered that your code does not run
properly, you want to:
 Isolate the bug(s)
 Eradicate the bug(s)
 Retest until code runs correctly for all cases
 Steep learning curve

 Goal is to have a bug-free program

 Tools
• Built in to IDLE and Anaconda
• Python Tutor
• print statement
• Use your brain, be systematic in your hunt

6.100L Lecture 12

42

ERROR MESSAGES – EASY

 Trying to access beyond the limits of a list
test = [1,2,3] then test[4] IndexError

 Trying to convert an inappropriate type
int(test) TypeError

 Referencing a non-existent variable
a NameError

 Mixing data types without appropriate coercion
'3'/4 TypeError

 Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a) SyntaxError

6.100L Lecture 12

43

LOGIC ERRORS - HARD

 think before writing new code

 draw pictures, take a break

 explain the code to
• someone else
• a rubber ducky

6.100L Lecture 12

44

https://www.youtube.com/watch?v=4AzsPnH488Q

DEBUGGING STEPS

 Study program code
• Don’t ask what is wrong
• Ask how did I get the unexpected result
• Is it part of a family?

 Scientific method
• Study available data
• Form hypothesis
• Repeatable experiments
• Pick simplest input to test with

6.100L Lecture 12

45

PRINT STATEMENTS

 Good way to test hypothesis
 When to print

• Enter function
• Parameters
• Function results

 Use bisection method
• Put print halfway in code
• Decide where bug may be depending on values

6.100L Lecture 12

46

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

EXCEPTIONS,
ASSERTIONS

(download slides and .py files to follow along)
6.100L Lecture 13

Ana Bell

1

EXCEPTIONS

2

UNEXPECTED
CONDITIONS

 What happens when procedure execution hits an unexpected
condition?

 Get an exception… to what was expected

• Trying to access beyond list limits

test = [1,7,4]
test[4] IndexError

• Trying to convert an inappropriate type

int(test) TypeError
• Referencing a non-existing variable

a NameError
• Mixing data types without coercion

'a'/4 TypeError

6.100L Lecture 13

3

HANDLING EXCEPTIONS

 Typically, exception causes an error to occur and execution to stop

 Python code can provide handlers for exceptions

 If expressions in try block all succeed
 Evaluation continues with code after except block

 Exceptions raised by any statement in body of try are handled by the

except statement

 Execution continues with the body of the except statement

 Then other expressions after that block of code

6.100L Lecture 13

if <all potentially problematic code succeeds>:
great, all that code
just ran fine!

else:
do something to
handle the problem

try:
do some potentially
problematic code

except:
do something to
handle the problem

4

EXAMPLE with CODE YOU MIGHT
HAVE ALREADY SEEN

 A function that sums digits in a string

CODE YOU’VE SEEN CODE WITH EXCEPTIONS

6.100L Lecture 13

def sum_digits(s):
""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

print("can't convert", char)

return total

def sum_digits(s):
""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

if char in '0123456789':

val = int(char)

total += val

return total

5

USER INPUT CAN LEAD TO
EXCEPTIONS

 User might input a character :(

 User might make b be 0 :(

a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

 Use try/except around the problematic code

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

6.100L Lecture 13

6

HANDLING SPECIFIC EXCEPTIONS

 Have separate except clauses to deal with a particular

type of exception

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b)

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")
print("a/b = infinity")
print("a+b =", a+b)

except:
print("Something went very wrong.")

6.100L Lecture 13

7

OTHER BLOCKS ASSOCIATED WITH
A TRY BLOCK

 else:
• Body of this is executed when execution of associated try body

completes with no exceptions

 finally:

• Body of this is always executed after try, else and except clauses,

even if they raised another error or executed a break, continue or

return
• Useful for clean-up code that should be run no matter what else

happened (e.g. close a file)

 Nice to know these exist, but we don’t really use these in this

class

6.100L Lecture 13

8

WHAT TO DO WITH EXCEPTIONS?

 What to do when encounter an error?

 Fail silently:

• Substitute default values or just continue

• Bad idea! user gets no warning

 Return an “error” value
• What value to choose?

• Complicates code having to check for a special value

 Stop execution, signal error condition

• In Python: raise an exception
raise ValueError("something is wrong")

6.100L Lecture 13

9

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a string

 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):
""" s is a non-empty string containing digits.

Returns sum of all chars that are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

raise ValueError("string contained a character")

return total

10

YOU TRY IT!

def pairwise_div(Lnum, Ldenom):
""" Lnum and Ldenom are non-empty lists of equal lengths containing numbers

Returns a new list whose elements are the pairwise
division of an element in Lnum by an element in Ldenom.

Raise a ValueError if Ldenom contains 0. """
your code here

For example:
L1 = [4,5,6]
L2 = [1,2,3]
print(pairwise_div(L1, L2)) # prints [4.0,2.5,2.0]

L1 = [4,5,6]
L2 = [1,0,3]
print(pairwise_div(L1, L2)) # raises a ValueError

6.100L Lecture 13

11

ASSERTIONS

6.100L Lecture 13

12

ASSERTIONS: DEFENSIVE
PROGRAMMING TOOL

 Want to be sure that assumptions on state of computation are as

expected

 Use an assert statement to raise an AssertionError
exception if assumptions not met

assert <statement that should be true>, "message if not true"

 An example of good defensive programming
 Assertions don’t allow a programmer to control response to unexpected

conditions

 Ensure that execution halts whenever an expected condition is not met

 Typically used to check inputs to functions, but can be used anywhere

 Can be used to check outputs of a function to avoid propagating bad

values

 Can make it easier to locate a source of a bug

6.100L Lecture 13

13

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a NON-EMPTY string
 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):
""" s is a non-empty string containing digits.
Returns sum of all chars that are digits """
assert len(s) != 0, "s is empty"
total = 0
for char in s:

try:
val = int(char)
total += val

except:
raise ValueError("string contained a character")

14

YOU TRY IT!

def pairwise_div(Lnum, Ldenom):
""" Lnum and Ldenom are non-empty lists of equal lengths

containing numbers
Returns a new list whose elements are the pairwise
division of an element in Lnum by an element in Ldenom.
Raise a ValueError if Ldenom contains 0. """
add an assert line here

6.100L Lecture 13

15

ANOTHER EXAMPLE

6.100L Lecture 13

16

LONGER EXAMPLE OF
EXCEPTIONS and ASSERTIONS

 Assume we are given a class list for a subject: each

entry is a list of two parts

• A list of first and last name for a student

• A list of grades on assignments

 Create a new class list, with name, grades, and an

average added at the end

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.100L Lecture 13

17

EXAMPLE
CODE

def get_stats(class_list):
new_stats = []
for stu in class_list:

new_stats.append([stu[0], stu[1], avg(stu[1])])
return new_stats

def avg(grades):
return sum(grades)/len(grades)

[[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

6.100L Lecture 13

18

ERROR IF NO GRADE FOR A
STUDENT

 If one or more students don’t have any grades,

get an error

test_grades = [[['peter', 'parker'], [10.0,55.0,85.0]],
[['bruce', 'wayne'], [10.0,80.0,75.0]],
[['captain', 'america'], [80.0,10.0,96.0]],
[['deadpool'], []]]

 Get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

6.100L Lecture 13

19

OPTION 1: FLAG THE ERROR BY
PRINTING A MESSAGE

 Decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

 Running on same test data gives

warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62.0],

[['deadpool'], [], None]]

6.100L Lecture 13

20

OPTION 2: CHANGE THE POLICY

 Decide that a student with no grades gets a zero
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

 Running on same test data gives

warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62]

[['deadpool'], [], 0.0]]
6.100L Lecture 13

21

OPTION 3: HALT EXECUTION IF
ASSERT IS NOT MET

def avg(grades):
assert len(grades) != 0, 'no grades data'
return sum(grades)/len(grades)

 Raises an AssertionError if it is given an empty list

for grades, prints out string message; stops execution

Otherwise runs as normal

6.100L Lecture 13

22

ASSERTIONS vs. EXCEPTIONS

 Goal is to spot bugs as soon as introduced and make

clear where they happened

 Exceptions provide a way of handling unexpected input
 Use when you don’t need to halt program execution

 Raise exceptions if users supplies bad data input

 Use assertions:
• Enforce conditions on a “contract” between a coder and a user

• As a supplement to testing

• Check types of arguments or values

• Check that invariants on data structures are met

• Check constraints on return values

• Check for violations of constraints on procedure (e.g. no

duplicates in a list)

6.100L Lecture 13

23

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

24

https://ocw.mit.edu
https://ocw.mit.edu/terms

DICTIONARIES
(download slides and .py files to follow along)

6.100L Lecture 14

Ana Bell

1

HOW TO STORE
STUDENT INFO

 Suppose we want to store and use grade information for

a set of students

 Could store using separate lists for each kind of

information

names = ['Ana', 'John', 'Matt', 'Katy']
grades = ['A+' , 'B' , 'A' , 'A']
microquizzes = ...
psets = ...

 Info stored across lists at same index, each index refers to

information for a different person

 Indirectly access information by finding location in lists

corresponding to a person, then extract

6.100L Lecture 14

2

HOW TO ACCESS
STUDENT INFO

def get_grade(student, name_list, grade_list):

i = name_list.index(student)

grade = grade_list[i]

return (student, grade)

 Messy if have a lot of different info of which to keep track,

e.g., a separate list for microquiz scores, for pset scores, etc.

 Must maintain many lists and pass them as arguments

 Must always index using integers

 Must remember to change multiple lists, when adding or

updating information

6.100L Lecture 14

3

HOW TO STORE AND
ACCESS STUDENT INFO

 Alternative might be to use a list of lists
eric = ['eric', ['ps', [8, 4, 5]], ['mq', [6, 7]]]
ana = ['ana', ['ps', [10, 10, 10]], ['mq', [9, 10]]]
john = ['john', ['ps', [7, 6, 5]], ['mq', [8, 5]]]

grades = [eric, ana, john]

 Then could access by searching lists, but code is still messy
def get_grades(who, what, data):

for stud in data:
if stud[0] == who:

for info in stud[1:]:
if info[0] == what:

return who, info

print(get_grades('eric', 'mq', grades))
print(get_grades('ana', 'ps', grades))

6.100L Lecture 14

4

A BETTER AND CLEANER WAY –
A DICTIONARY

 Nice to use one data structure, no separate lists

 Nice to index item of interest directly
 A Python dictionary has entries that map a key:value

A list A dictionary
Elem 1

Elem 2

Elem 3

Elem 4

…

Key 1

Key 2

Key 3

Key 4

…

Val 1

Val 2

Val 3

Val 4

…

0

1

2

3

…

6.100L Lecture 14

5

BIG IDEA
Dict value refers to the
value associated with a
key.
This terminology is may sometimes be confused with the

regular value of some variable.

6.100L Lecture 14

6

A PYTHON DICTIONARY

 Store pairs of data as an entry
• key (any immutable object)

• str, int, float, bool, tuple, etc

• value (any data object)

• Any above plus lists and other dicts!

my_dict = {}

d = {4:16}

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

Key 1

Key 2

Key 3

…

Val 1

Val 2

Val 3

…

key1 val1

6.100L Lecture 14

key2 val2 key3 val3 key4 val4

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

7

DICTIONARY LOOKUP

 Similar to indexing into a list

 Looks up the key
 Returns the value associated with

the key

 If key isn’t found, get an error

 There is no simple expression to
get a key back given some value!

6.100L Lecture 14

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

grades['John'] evaluates to 'B'

grades['Grace'] gives a KeyError

Key 1

Key 2

Key 3

…

Val 1

Val 2

Val 3

…

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

Key

'John'

Value associated

with key 'John'

8

YOU TRY IT!

 Write a function according to this spec

def find_grades(grades, students):

""" grades is a dict mapping student names (str) to grades (str)

students is a list of student names

Returns a list containing the grades for students (in same order) """

for example

d = {'Ana':'B', 'Matt':'C', 'John':'B', 'Katy':'A'}

print(find_grades(d, ['Matt', 'Katy'])) # returns ['C', 'A']

6.100L Lecture 14

9

BIG IDEA
Getting a dict value is
just a matter of indexing
with a key.
No. Need. To. Loop

6.100L Lecture 14

10

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

 Add an entry

grades['Grace'] = 'A'

 Change entry

grades['Grace'] = 'C'

 Delete entry

del(grades['Ana'])

6.100L Lecture 14

'Grace' 'A'

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

'C'

11

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

 Test if key in dictionary

'John' in grades returns True
'Daniel' in grades returns False
'B' in grades returns False

6.100L Lecture 14

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

12

YOU TRY IT!

 Write a function according to these specs
def find_in_L(Ld, k):

""" Ld is a list of dicts
k is an int

Returns True if k is a key in any dicts of Ld and False otherwise """

for example
d1 = {1:2, 3:4, 5:6}
d2 = {2:4, 4:6}
d3 = {1:1, 3:9, 4:16, 5:25}

print(find_in_L([d1, d2, d3], 2) # returns True
print(find_in_L([d1, d2, d3], 25) # returns False

6.100L Lecture 14

13

DICTIONARY
OPERATIONS

 Can iterate over dictionaries but

assume there is no guaranteed order

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

 Get an iterable that acts like a tuple of all keys
grades.keys() returns dict_keys(['Ana', 'Matt', 'John', 'Katy'])

list(grades.keys()) returns ['Ana', 'Matt', 'John', 'Katy']

 Get an iterable that acts like a tuple of all dict values
grades.values() returns dict_values(['B', 'A', 'B', 'A'])

list(grades.values()) returns ['B', 'A', 'B', 'A']

6.100L Lecture 14

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

14

DICTIONARY OPERATIONS
most useful way to iterate over
dict entries (both keys and vals!)

 Can iterate over dictionaries but

assume there is no guaranteed order

grades = {'Ana':'B', 'Matt':'A', 'John':'B', 'Katy':'A'}

 Get an iterable that acts like a tuple of all items
grades.items()

 returns dict_items([('Ana', 'B'), ('Matt', 'A'), ('John', 'B'), ('Katy', 'A')])

list(grades.items())

 returns [('Ana', 'B'), ('Matt', 'A'), ('John', 'B'), ('Katy', 'A')]

 Typical use is to iterate over key,value tuple
for k,v in grades.items():

print(f"key {k} has value {v}")

6.100L Lecture 14

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'B'

'A'

15

YOU TRY IT!

 Write a function that meets this spec

def count_matches(d):

""" d is a dict

Returns how many entries in d have the key equal to its value """

for example

d = {1:2, 3:4, 5:6}

print(count_matches(d)) # prints 0

d = {1:2, 'a':'a', 5:5}

print(count_matches(d)) # prints 2

6.100L Lecture 14

16

DICTIONARY KEYS & VALUES

 Dictionaries are mutable objects (aliasing/cloning rules apply)

 Use = sign to make an alias

 Use d.copy() to make a copy

 Assume there is no order to keys or values!

 Dict values

• Any type (immutable and mutable)

• Dictionary values can be lists, even other dictionaries!

• Can be duplicates
 Keys

• Must be unique
• Immutable type (int, float, string, tuple,bool)

• Actually need an object that is hashable, but think of as immutable as all

immutable types are hashable

• Be careful using float type as a key

6.100L Lecture 14

17

WHY IMMUTABLE/HASHABLE
KEYS?

 A dictionary is stored in memory in a special way

 Next slides show an example

 Step 1: A function is run on the dict key
 The function maps any object to an int

E.g. map “a” to 1, “b” to 2, etc, so “ab” could map to 3

 The int corresponds to a position in a block of memory addresses

 Step 2: At that memory address, store the dict value
 To do a lookup using a key, run the same function

 If the object is immutable/hashable then you get the same int back

 If the object is changed then the function gives back a different int!

6.100L Lecture 14

18

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16

16%16 = 0

5 + 18 + 9 + 3 = 35

35%16 = 3

10 + 15 + 8 + 14 = 47

47%16 = 15

Memory block (like a list)

0

1

2

3

Ana: C

Eric: A

John: B

6.100L Lecture 14

Hash function:

1) Sum the letters

2) Take mod 16 (to fit in a memory

block with 16 entries)

4

5

6

7

8

9

10

11

12

13

14

15

[K, a, t, e] B

11 + 1 + 20 + 5 = 37

37%16 = 5

[K,a,t,e]: B

19

Memory block (like a list)

0

1

2

3

Ana: C

Eric: A

6.100L Lecture 14

Hash function:

1) Sum the letters

2) Take mod 16 (to fit in a memory

block with 16 entries)

Kate changes her name to Cate. Same

person, different name. Look up her

grade? 4

5

6

7

8

9

10

11

12

13

14

15

[C, a, t, e]

3 + 1 + 20 + 5 = 29

29%16 = 13

[K,a,t,e]: B

 ??? Not here!

John: B

20

Key 2 Val 2

A PYTHON DICTIONARY for
STUDENT GRADES

 Separate students are

separate dict entries

 Entries are separated using

a comma

Key 1 Val 1

6.100L Lecture 14

grades = {'Ana':{'mq':[5,4,4], 'ps': [10,9,9], 'fin': 'B'},
'Bob':{'mq':[6,7,8], 'ps': [8,9,10], 'fin': 'A'}}

21

Key 2 Val 2'Bob' 'mq' [6,7,8]

'ps' [8,9,10]

'fin' 'A'

A PYTHON DICTIONARY for
STUDENT GRADES

 Each dict entry maps a key

to a value

 The mapping is done with

a : character

 grades maps str:dict

Key 1 Val 1

6.100L Lecture 14

'Ana'

grades = {'Ana':{'mq':[5,4,4], 'ps': [10,9,9], 'fin': 'B'},
'Bob':{'mq':[6,7,8], 'ps': [8,9,10], 'fin': 'A'}}

'mq' [5,4,4]

'ps' [10,9,9]

'fin' 'B'

22

Key 1 Val 1'Bob' 'mq' [6,7,8]

'ps' [8,9,10]

'fin' 'A'

A PYTHON DICTIONARY for
STUDENT GRADES

 The values of grades are

dicts

 Each value maps a

 str:list

 str:str

Key 1 Val 1

6.100L Lecture 14

'Ana'

grades = {'Ana':{'mq':[5,4,4], 'ps': [10,9,9], 'fin': 'B'},
'Bob':{'mq':[6,7,8], 'ps': [8,9,10], 'fin': 'A'}}

'mq' [5,4,4]

'ps' [10,9,9]

'fin' 'B'

23

Key 1 Val 1'Bob' 'mq' [6,7,8]

'ps' [8,9,10]

'fin' 'A'

A PYTHON DICTIONARY for
STUDENT GRADES

 The values of grades are

dicts

 Each value maps a

 str:list

 str:str

Key 1

6.100L Lecture 14

'Ana'

grades = {'Ana':{'mq':[5,4,4], 'ps': [10,9,9], 'fin': 'B'},
'Bob':{'mq':[6,7,8], 'ps': [8,9,10], 'fin': 'A'}}

'mq' [5,4,4]

'ps' [10,9,9]

'fin' 'B'

grades['Ana']['mq'][0] returns 5

24

YOU TRY IT!

my_d ={'Ana':{'mq':[10], 'ps':[10,10]},
'Bob':{'ps':[7,8], 'mq':[8]},
'Eric':{'mq':[3], 'ps':[0]} }

def get_average(data, what):
all_data = []
for stud in data.keys():

INSERT LINE HERE
return sum(all_data)/len(all_data)

6.100L Lecture 14

Given the dict my_d, and the outline of a function to compute an average, which line should

be inserted where indicated so that get_average(my_d, 'mq') computes average

for all 'mq' entries? i.e. find average of all mq scores for all students.

A) all_data = all_data + data[stud][what]
B) all_data.append(data[stud][what])
C) all_data = all_data + data[stud[what]]
D) all_data.append(data[stud[what]])

25

list vs dict

6.100L Lecture 14

 Ordered sequence of

elements

 Look up elements by an

integer index

 Indices have an order
 Index is an integer
 Value can be any type

Matches “keys” to

“values”

 Look up one item by

another item

 No order is guaranteed

 Key can be any

immutable type

 Value can be any type

26

EXAMPLE: FIND MOST COMMON
WORDS IN A SONG’S LYRICS

1) Create a frequency dictionary mapping str:int
2) Find word that occurs most often and how many times

• Use a list, in case more than one word with same number

• Return a tuple (list,int) for (words_list, highest_freq)

3) Find the words that occur at least X times
• Let user choose “at least X times”, so allow as parameter

• Return a list of tuples, each tuple is a (list, int) containing the

list of words ordered by their frequency

• IDEA: From song dictionary, find most frequent word. Delete most

common word. Repeat. It works because you are mutating the song

dictionary.

6.100L Lecture 14

27

CREATING A DICTIONARY
Python Tutor LINK

song = "RAH RAH AH AH AH ROM MAH RO MAH MAH"

def generate_word_dict(song):

song_words = song.lower()

words_list = song_words.split()

word_dict = {}

for w in words_list:

if w in word_dict:

word_dict[w] += 1

else:

word_dict[w] = 1

return word_dict

6.100L Lecture 14

28

https://pythontutor.com/visualize.html#code=song%20%3D%20%22RAH%20RAH%20AH%20AH%20AH%20ROM%20MAH%20RO%20MAH%20MAH%22%0Adef%20generate_word_dict%28song%29%3A%0A%20%20%20%20song_words%20%3D%20song.lower%28%29%0A%20%20%20%20words_list%20%3D%20song_words.split%28%29%0A%20%20%20%20word_dict%20%3D%20%7B%7D%0A%20%20%20%20for%20w%20in%20words_list%3A%0A%20%20%20%20%20%20%20%20if%20w%20in%20word_dict%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20word_dict%5Bw%5D%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20word_dict%5Bw%5D%20%3D%201%0A%20%20%20%20return%20word_dict%20%0A%0Aword_dict%20%3D%20generate_word_dict%28song%29%0Aprint%28word_dict%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

USING THE DICTIONARY
Python Tutor LINK

word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

def find_frequent_word(word_dict):

words = []

highest = max(word_dict.values())

for k,v in word_dict.items():

if v == highest:

words.append(k)

return (words, highest)

6.100L Lecture 14

29

https://pythontutor.com/visualize.html#code=def%20find_frequent_word%28word_dict%29%3A%0A%20%20%20%20word%20%3D%20%5B%5D%0A%20%20%20%20highest%20%3D%20max%28word_dict.values%28%29%29%20%0A%20%20%20%20for%20k,v%20in%20word_dict.items%28%29%3A%0A%20%20%20%20%20%20%20%20if%20v%20%3D%3D%20highest%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20word.append%28k%29%0A%20%20%20%20return%20%28word,%20highest%29%0A%20%20%20%20%0Aword_dict%20%3D%20%7B'rah'%3A2,%20'ah'%3A3,%20'rom'%3A1,%20'mah'%3A3,%20'ro'%3A1%7D%0Amost_freq%20%3D%20find_frequent_word%28word_dict%29%0Aprint%28most_freq%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Repeat the next few steps as long as the highest frequency is

greater than x

 Find highest frequency

6.100L Lecture 14

word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

30

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Use function find_frequent_word to get words with the

biggest frequency

6.100L Lecture 14

word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

31

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Remove the entries corresponding to these words from

dictionary by mutation

 Save them in the result

6.100L Lecture 14

word_dict = {'rah':2, 'rom':1, 'ro':1}

freq_list = [(['ah','mah'],3)]

32

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Find highest frequency in the mutated dict

 The result so far…

6.100L Lecture 14

word_dict = {'rah':2, 'rom':1, 'ro':1}

freq_list = [(['ah','mah'],3)]

33

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Use function find_frequent_word to get words with that

frequency

 The result so far…

6.100L Lecture 14

word_dict = {'rah':2, 'rom':1, 'ro':1}

freq_list = [(['ah','mah'],3)]

34

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 Remove the entries corresponding to these words from

dictionary by mutation

 Add them to the result so far

6.100L Lecture 14

word_dict = { 'rom':1, 'ro':1}

freq_list = [(['ah','mah'],3), (['rah'],2)]

35

FIND WORDS WITH FREQUENCY
GREATER THAN x=1

 The highest frequency is now smaller than x=2, so stop

 The final result

6.100L Lecture 14

word_dict = { 'rom':1, 'ro':1}

freq_list = [(['ah','mah'],3), (['rah'],2)]

36

LEVERAGING DICT PROPERTIES
Python Tutor LINK

word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

def occurs_often(word_dict, x):
freq_list = []
word_freq_tuple = find_frequent_word(word_dict)

while word_freq_tuple[1] > x:

word_freq_tuple = find_frequent_word(word_dict)
freq_list.append(word_freq_tuple)
for word in word_freq_tuple[0]:

del(word_dict[word])
return freq_list

6.100L Lecture 14

37

https://pythontutor.com/visualize.html#code=word_dict%20%3D%20%7B'rah'%3A2,%20'ah'%3A3,%20'rom'%3A1,%20'mah'%3A3,%20'ro'%3A1%7D%0A%0Adef%20find_frequent_word%28word_dict%29%3A%0A%20%20%20%20word%20%3D%20%5B%5D%0A%20%20%20%20highest%20%3D%20max%28word_dict.values%28%29%29%0A%20%20%20%20for%20k,v%20in%20word_dict.items%28%29%3A%0A%20%20%20%20%20%20%20%20if%20v%20%3D%3D%20highest%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20word.append%28k%29%0A%20%20%20%20return%20%28word,%20highest%29%0A%20%20%20%20%0Adef%20occurs_often%28word_dict,%20x%29%3A%0A%20%20%20%20freq_list%20%3D%20%5B%5D%0A%20%20%20%20word_freq_tuple%20%3D%20find_frequent_word%28word_dict%29%0A%20%20%20%20while%20word_freq_tuple%5B1%5D%20%3E%20x%3A%0A%20%20%20%20%20%20%20%20word_freq_tuple%20%3D%20find_frequent_word%28word_dict%29%0A%20%20%20%20%20%20%20%20freq_list.append%28word_freq_tuple%29%0A%20%20%20%20%20%20%20%20for%20word%20in%20word_freq_tuple%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20del%28word_dict%5Bword%5D%29%0A%20%20%20%20return%20freq_list%0A%0Aprint%28occurs_often%28word_dict,%202%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

SOME OBSERVATIONS

 Conversion of string into list of words enables use of list

methods

 Used words_list = song_words.split()

 Iteration over list naturally follows from structure of lists

 Used for w in words_list:

 Dictionary stored the same data in a more appropriate way
 Ability to access all values and all keys of dictionary allows

natural looping methods

 Used for k,v in word_dict.items():

 Mutability of dictionary enables iterative processing

 Used del(word_dict[word])

 Reused functions we already wrote!

6.100L Lecture 14

38

SUMMARY

 Dictionaries have entries that map a key to a value
 Keys are immutable/hashable and unique objects

 Values can be any object
 Dictionaries can make code efficient

 Implementation-wise

 Runtime-wise

6.100L Lecture 14

39

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

40

https://ocw.mit.edu
https://ocw.mit.edu/terms

RECURSION
(download slides and .py files to follow along)

6.100L Lecture 15

Ana Bell

1

ITERATIVE ALGORITHMS
SO FAR

 Looping constructs (while and for loops) lead to
iterative algorithms

 Can capture computation in a set of state variables that
update, based on a set of rules, on each iteration through
loop
 What is changing each time through loop, and how?
 How do I keep track of number of times through loop?
 When can I stop?
 Where is the result when I stop?

6.100L Lecture 15

2

MULTIPLICATION

 The * operator does this for us

 Make a function

6.100L Lecture 15

def mult(a, b):

return a*b

3

MULTIPLICATION
THINK in TERMS of ITERATION

 Can you make this iterative?

 Define a*b as a+a+a+a... b times

 Write a function

6.100L Lecture 15

def mult(a, b):

total = 0

for n in range(b):

total += a

return total

4

MULTIPLICATION –
ANOTHER ITERATIVE SOLUTION

 “multiply a * b” is equivalent to “add b copies of a”

 Capture state by
 An iteration number (i) starts at b

i i-1 and stop when 0
 A current value of computation (result) starts at 0

result result + a

def mult_iter(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

6.100L Lecture 15

a + a + a + a + … + a

i
result: 0

i
result: a

i
result: 2a

i
result: 3a

i
result: 4a

Update
rules

5

MULTIPLICATION
NOTICE the RECURSIVE PATTERNS

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4 is 5+5*3
 But this is 5+5+5*2
 And this is 5+5+5+5*1

6.100L Lecture 15

6

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15

7

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15

8

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15

9

MULTIPLICATION
REACHED the END

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15

10

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5)))

6.100L Lecture 15

11

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(10))
 = 5+(5+(5+(5)))

6.100L Lecture 15

12

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times

 If a = 5 and b = 4
 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(15)
 = 5+(5+(10))
 = 5+(5+(5+(5)))

6.100L Lecture 15

13

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce

problem to a
simpler/smaller version
of same problem, plus
simple operations

6.100L Lecture 15

14

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce

problem to a
simpler/smaller version
of same problem, plus
simple operations

 Base case
• Keep reducing problem

until reach a simple case
that can be solved
directly

• When b=1, a*b=a

6.100L Lecture 15

15

MULTIPLICATION – RECURSIVE
CODE Python Tutor LINK

 Recursive step
• If b != 1, a*b = a + a*(b-1)

 Base case
• If b = 1, a*b = a

6.100L Lecture 15

def mult_recur(a, b):

if b == 1:

return a

else:

return a + mult_recur(a, b-1)

16

https://pythontutor.com/visualize.html#code=def%20mult_recur%28a,%20b%29%3A%0A%20%20%20%20if%20b%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%20a%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20a%20%2B%20mult_recur%28a,%20b-1%29%0A%0Aprint%28mult_recur%285,4%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

REAL LIFE EXAMPLE
Student requests a regrade: ONLY ONE function call

Iterative:
 Student asks the prof then the TA then the LA then the grader

one-by-one until one or more regrade the exam/parts
 Student iterates through everyone and keeps track of the new score

6.100L Lecture 15

Meme girl © source unknown. Woman image ©
ϮϬϬϳ EBC hniversal. Willy Wonka © ϭϵϳϭ Warner
Bros. �ntertainment /nc. Still from Bridesmaids ©
ϮϬϭϭ hniversal Studios. Still from Cocoon © ϮϬϭϭ
hniversal Studios. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see https://
ocw.mit.edu/help/faq-fair-use/

17

https://ocw.mit.edu/help/faq-fair-use/

REAL LIFE EXAMPLE
Student requests a regrade: MANY function calls

Recursive:
 1) Student request(a function call to

regrade!):
 Asks the prof to regrade
 Prof asks a TA to regrade
 TA asks an LA to regrade
 LA asks a grader to regrade

 2) Relay the results (functions return
results to their callers):

 Grader tells the grade to the LA
 LA tells the grade to the TA
 TA tells the grade to the prof
 Prof tells the grade to the student

6.100L Lecture 15

Regrade
please?

Regrade
please?

Regrade
please?

Here
you go

Here
you go

Here
you go

Here
you go

18

Meme girl © source unknown. Woman image © ϮϬϬϳ EBC hniversal. Willy Wonka
© ϭϵϳϭ Warner Bros. �ntertainment /nc. Still from Bridesmaids © ϮϬϭϭ hniversal
Studios. Still from Cocoon © ϮϬϭϭ hniversal Studios. All rights reserved. This
content is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA
“Earlier” function calls
are waiting on results
before completing.

6.100L Lecture 15

19

WHAT IS RECURSION?

 Algorithmically: a way to design solutions to problems by
divide-and-conquer or decrease-and-conquer
 Reduce a problem to simpler versions of the same problem or to

problem that can be solved directly

 Semantically: a programming technique where a function
calls itself
 In programming, goal is to

NOT have infinite recursion
 Must have 1 or more base cases

that are easy to solve directly
 Must solve the same problem on

some other input with the goal of
simplifying the larger input
problem, ending at base case

6.100L Lecture 15

20

YOU TRY IT!
 Complete the function that calculates np for variables n and p

def power_recur(n, p):
if _______:

return ______
elif _______:

return ______
else:

return _________________

6.100L Lecture 15

21

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* … * 1

 For what n do we know the factorial?
n = 1 if n == 1:

return 1

 How to reduce problem? Rewrite in terms of something simpler
to reach base case
n*(n-1)! else:

return n*fact(n-1)

6.100L Lecture 15

22

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

Global scope

fact Some
code

fact scope
(call w/ n=4)

n
4

fact scope
(call w/ n=3)

n
3

fact scope
(call w/ n=2)

n
2

fact scope
(call w/ n=1)

n
1

6.100L Lecture 15

def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

print(fact(4))

23

BIG IDEA
In recursion, each
function call is
completely separate.
Separate scope/environments.

Separate variable names.

Fully I-N-D-E-P-E-N-D-E-N-T

6.100L Lecture 15

24

SOME OBSERVATIONS
Python Tutor LINK for factorial

 Each recursive call to a function
creates its own scope/environment
 Bindings of variables in a scope are

not changed by recursive call to
same function

 Values of variable binding shadow
bindings in other frames

 Flow of control passes back to
previous scope once function call
returns value

6.100L Lecture 15

25

https://pythontutor.com/visualize.html#code=def%20fact%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n*fact%28n-1%29%0A%0Aprint%28fact%284%29%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

ITERATION vs. RECURSION

def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def fact_recur(n):

if n == 1:

return 1

else:

return n*fact_recur(n-1)

6.100L Lecture 15

 Recursion may be efficient from programmer POV
 Recursion may not be efficient from computer POV

26

WHEN to USE RECURSION?
SO FAR WE SAW VERY SIMPLE CODE

 Multiplication of two numbers did not need a recursive
function, did not even need an iterative function!

 Factorial was a little more intuitive to implement with recursion
 We translated a mathematical equation that told us the structure

 MOST problems do not need recursion to solve them
 If iteration is more intuitive for you then solve them using loops!

 SOME problems yield far
simpler code using recursion
 Searching a file system

for a specific file
 Evaluating mathematical

expressions that use parens
for order of ops

6.100L Lecture 15

27

SUMMARY

 Recursion is a
 Programming method
 Way to divide and conquer

 A function calls itself
 A problem is broken down into a base case and a recursive step
 A base case

 Something you know
 You’ll eventually reach this case (if not, you have infinite recursion)

 A recursive step
 The same problem
 Just slightly different in a way that will eventually reach the base case

6.100L Lecture 15

28

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

29

https://ocw.mit.edu
https://ocw.mit.edu/terms

PYTHON CLASSES
(download slides and .py files to follow along)

6.100L Lecture 17

Ana Bell

1

OBJECTS

 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 Each is an object, and every object has:
• An internal data representation (primitive or composite)
• A set of procedures for interaction with the object

 An object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instance of a str

6.100L Lecture 17

2

OBJECT ORIENTED
PROGRAMMING (OOP)

 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 Can create new objects of some type

 Can manipulate objects

 Can destroy objects
 Explicitly using del or just “forget” about them
 Python system will reclaim destroyed or inaccessible objects –

called “garbage collection”

6.100L Lecture 17

3

WHAT ARE OBJECTS?

 Objects are a data abstraction
that captures…

(1) An internal representation
 Through data attributes

(2) An interface for
interacting with object
 Through methods

(aka procedures/functions)
 Defines behaviors but

hides implementation

6.100L Lecture 17

4

 (1) How are lists represented internally?
Does not matter for so much for us as users (private representation)

L =
or L =
 (2) How to interface with, and manipulate, lists?

• L[i], L[i:j], +

• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(),

L.sort()

 Internal representation should be private

 Correct behavior may be compromised if you manipulate internal
representation directly

EXAMPLE:
[1,2,3,4] has type list

6.100L Lecture 17

1 -> 2 -> 3 -> 4 ->

1 -> 2 -> 3

5

REAL-LIFE EXAMPLES

 Elevator: a box that can change floors
 Represent using length, width, height, max_capacity, current_floor
 Move its location to a different floor, add people, remove people

 Employee: a person who works for a company
 Represent using name, birth_date, salary
 Can change name or salary

 Queue at a store: first customer to arrive is the first one helped
 Represent customers as a list of str names
 Append names to the end and remove names from the beginning

 Stack of pancakes: first pancake made is the last one eaten
 Represent stack as a list of str
 Append pancake to the end and remove from the end

6.100L Lecture 17

6

ADVANTAGES OF OOP

 Bundle data into packages together with procedures that
work on them through well-defined interfaces

 Divide-and-conquer development
• Implement and test behavior of each class separately
• Increased modularity reduces complexity

 Classes make it easy to reuse code
• Many Python modules define new classes
• Each class has a separate environment (no collision on function

names)
• Inheritance allows subclasses to redefine or extend a selected

subset of a superclass’ behavior

6.100L Lecture 17

7

BIG IDEA

You write the class so you
make the design decisions.
You decide what data represents the class.

You decide what operations a user can do with the class.

6.100L Lecture 17

8

 Make a distinction between creating a class and
using an instance of the class

 Creating the class involves
• Defining the class name
• Defining class attributes
• for example, someone wrote code to implement a list class

 Using the class involves
• Creating new instances of the class
• Doing operations on the instances
• for example, L=[1,2] and len(L)

6.100L Lecture 17

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

9

A PARALLEL with FUNCTIONS

 Defining a class is like defining a function
 With functions, we tell Python this procedure exists
 With classes, we tell Python about a blueprint for this new data type

 Its data attributes
 Its procedural attributes

 Creating instances of objects is like calling the function
 With functions we make calls with different actual parameters
 With classes, we create new object tinstances in memory of this type

 L1 = [1,2,3]
L2 = [5,6,7]

6.100L Lecture 17

10

COORDINATE TYPE
DESIGN DECISIONS

6.100L Lecture 17

(3 , 4)

(1 , 1)

 Decide what to do with
coordinates

• Tell us how far away the
coordinate is on the x or y axes

• Measure the distance between
two coordinates, Pythagoras

Can create instances of a
Coordinate object

 Decide what data elements
constitute an object

• In a 2D plane
• A coordinate is defined by

an x and y value

11

DEFINE YOUR OWN TYPES

 Use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 Similar to def, indent code to indicate which statements are
part of the class definition

 The word object means that Coordinate is a Python
object and inherits all its attributes (will see in future lects)

6.100L Lecture 17

Implementing the class Using the class

12

WHAT ARE ATTRIBUTES?

 Data and procedures that “belong” to the class

 Data attributes
• Think of data as other objects/variables that make up the class
• for example, a coordinate is made up of two numbers

 Methods (procedural attributes)
• Think of methods as functions that only work with this class
• How to interact with the object
• for example you can define a distance between two coordinate

objects but there is no meaning to a distance between two list
objects

6.100L Lecture 17

13

DEFINING HOW TO CREATE AN INSTANCE OF A
CLASS

 First have to define how to create an instance of class

 Use a special method called __init__ to initialize some
data attributes or perform initialization operations

class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

 self allows you to create variables that belong to this object

 Without self, you are just creating regular variables!

6.100L Lecture 17

Implementing the class Using the class

14

WHAT is self?
ROOM EXAMPLE

 Think of the class definition as a
blueprint with placeholders for
actual items
 self has a chair
 self has a coffee table
 self has a sofa

6.100L Lecture 17

 Now when you create ONE instance
(name it living_room), self becomes
this actual object
 living_room has a blue chair
 living_room has a black table
 living_room has a white sofa

 Can make many instances using
the same blueprint

15

Image © source unknown. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/
help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA
When defining a class,
we don’t have an actual
tangible object here.
It’s only a definition.

6.100L Lecture 17

16

ACTUALLY CREATING
AN INSTANCE OF A CLASS

 Don’t provide argument for self, Python
does this automatically

c = Coordinate(3,4)

origin = Coordinate(0,0)

 Data attributes of an instance are called instance variables
 Data attributes were defined with self.XXX and they are

accessible with dot notation for the lifetime of the object
 All instances have these data attributes, but with different values!

print(c.x)

print(origin.x)

6.100L Lecture 17

Implementing the class Using the class

Recall the __init__ method in the class def:
def __init__(self, xval, yval):

self.x = xval
self.y = yval

17

VISUALIZING INSTANCES

 Suppose we create an instance of
a coordinate

c = Coordinate(3,4)

 Think of this as creating a
structure in memory

 Then evaluating
c.x

looks up the structure to which
c points, then finds the binding
for x in that structure

6.100L Lecture 17

c
Type: Coordinate

x: 3

y: 4

18

VISUALIZING INSTANCES:
in memory

 Make another instance using
a variable

a = 0

orig = Coordinate(a,a)

orig.x

 All these are just objects in
memory!

 We just access attributes of
these objects

6.100L Lecture 17

orig
Type: Coordinate

x: 0

y: 0

a 0

c
Type: Coordinate

x: 3

y: 4

19

VISUALIZING INSTANCES:
draw it

6.100L Lecture 17

(3 , 4)

(0 , 0)
origin

c

class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x)

print(origin.x)

20

WHAT IS A METHOD?

 Procedural attribute
 Think of it like a function that works only with this class

 Python always passes the object as the first argument
 Convention is to use self as the name of the first argument of all

methods

6.100L Lecture 17

21

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 Other than self and dot notation, methods behave just

like functions (take params, do operations, return)

6.100L Lecture 17

Implementing the class Using the class

22

HOW TO CALL A METHOD?

 The “.” operator is used to access any attribute
 A data attribute of an object (we saw c.x)
 A method of an object

 Dot notation
<object_variable>.<method>(<parameters>)

 Familiar?
my_list.append(4)

my_list.sort()

6.100L Lecture 17

23

HOW TO USE A METHOD

Using the class:

c = Coordinate(3,4)

orig = Coordinate(0,0)

print(c.distance(orig))

 Notice that self becomes the object you call the
method on (the thing before the dot!)

6.100L Lecture 17

Implementing the class Using the class

Recall the definition of distance method:

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

24

VISUALIZING INVOCATION

 Coordinate class is an object in
memory
 From the class definition

 Create two Coordinate objects

c = Coordinate(3,4)

orig = Coordinate(0,0)

6.100L Lecture 17

c
Type: Coordinate

x: 3

y: 4

Coordinate

self.x

self.y

__init__: some code

distance: some code

orig
Type: Coordinate

x: 0

y: 0

25

VISUALIZING INVOCATION

 Evaluate the method call
c.distance(orig)

 1) The object is before the dot
 2) Looks up the type of c
 3) The method to call is after the

dot.
 4) Finds the binding for
distance in that object class
 5) Invokes that method with

c as self and
orig as other

6.100L Lecture 17

c
Type: Coordinate

x: 3

y: 4

Coordinate

self.x

self.y

__init__: some code

distance: some code

orig
Type: Coordinate

x: 0

y: 0

26

HOW TO USE A METHOD

 Conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

c.distance(zero)

6.100L Lecture 17

 Equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0)

Coordinate.distance(c, zero)

Implementing the class Using the class

27

BIG IDEA
The . operator accesses
either data attributes or
methods.
Data attributes are defined with self.something

Methods are functions defined inside the class with self as the first parameter.

6.100L Lecture 17

28

THE POWER OF OOP

 Bundle together objects that share
• Common attributes and
• Procedures that operate on those attributes

 Use abstraction to make a distinction between how to
implement an object vs how to use the object

 Build layers of object abstractions that inherit behaviors
from other classes of objects

 Create our own classes of objects on top of Python’s
basic classes

6.100L Lecture 17

29

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

MORE PYTHON CLASS
METHODS

(download slides and .py files to follow along)

6.100L Lecture 18

Ana Bell

1

IMPLEMENTING USING
THE CLASS vs THE CLASS

Implementing a new
object type with a class

 Define the class

 Define data attributes
(WHAT IS the object)

 Define methods
(HOW TO use the object)

Class abstractly captures
common properties and
behaviors

6.100L Lecture 18

Using the new object type in
code

• Create instances of the
object type

• Do operations with them

Instances have specific
values for attributes

Write code from two different perspectives

2

RECALL THE COORDINATE CLASS

 Class definition tells Python the blueprint for a type Coordinate

6.100L Lecture 18

class Coordinate(object):
""" A coordinate made up of an x and y value """
def __init__(self, x, y):

""" Sets the x and y values """
self.x = x
self.y = y

def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

3

ADDING METHODS TO THE
COORDINATE CLASS

 Methods are functions that only work with objects of this type

6.100L Lecture 18

class Coordinate(object):
""" A coordinate made up of an x and y value """
def __init__(self, x, y):

""" Sets the x and y values """
self.x = x
self.y = y

def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def to_origin(self):
""" always sets self.x and self.y to 0,0 """
self.x = 0
self.y = 0

4

MAKING COORDINATE INSTANCES

 Creating instances makes actual Coordinate objects in memory

 The objects can be manipulated
 Use dot notation to call methods and access data attributes

6.100L Lecture 18

c = Coordinate(3,4)
origin = Coordinate(0,0)

print(f"c's x is {c.x} and origin's x is {origin.x}")
print(c.distance(origin))

c.to_origin()
print(c.x, c.y)

5

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS

 Class name is the type
class Coordinate(object)

 Class is defined generically
 Use self to refer to some

instance while defining the
class

(self.x – self.y)**2

 self is a parameter to
methods in class definition

 Class defines data and
methods common across all
instances

6.100L Lecture 18

 Instance is one specific object
coord = Coordinate(1,2)

 Data attribute values vary
between instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)

• c1 and c2 have different data
attribute values c1.x and c2.x
because they are different objects

 Instance has the structure of
the class

6

USING CLASSES TO BUILD OTHER
CLASSES

 Example: use Coordinates to build Circles

 Our implementation will use 2 data attributes
 Coordinate object representing the center

 int object representing the radius

6.100L Lecture 18

Center

coordinate

radius

7

CIRCLE CLASS:
DEFINITION and INSTANCES

class Circle(object):

def __init__(self, center, radius):

self.center = center

self.radius = radius

center = Coordinate(2, 2)

my_circle = Circle(center, 2)

6.100L Lecture 18

8

YOU TRY IT!

 Add code to the init method to check that the type of center is
a Coordinate obj and the type of radius is an int. If either are
not these types, raise a ValueError.

def __init__(self, center, radius):
self.center = center

self.radius = radius

6.100L Lecture 18

9

CIRCLE CLASS:
DEFINITION and INSTANCES

class Circle(object):

def __init__(self, center, radius):

self.center = center

self.radius = radius

def is_inside(self, point):

""" Returns True if point is in self, False otherwise """

return point.distance(self.center) < self.radius

center = Coordinate(2, 2)

my_circle = Circle(center, 2)

p = Coordinate(1,1)

print(my_circle.is_inside(p))

6.100L Lecture 18

10

YOU TRY IT!
 Are these two methods in the Circle class functionally equivalent?

class Circle(object):

def __init__(self, center, radius):

self.center = center

self.radius = radius

def is_inside1(self, point):
return point.distance(self.center) < self.radius

def is_inside2(self, point):
return self.center.distance(point) < self.radius

6.100L Lecture 18

11

EXAMPLE:
FRACTIONS

 Create a new type to represent a number as a fraction

 Internal representation is two integers
• Numerator

• Denominator

 Interface a.k.a. methods a.k.a how to interact with
Fraction objects

• Add, subtract

• Invert the fraction

 Let’s write it together!

6.100L Lecture 18

12

NEED TO CREATE INSTANCES

class SimpleFraction(object):

def __init__(self, n, d):
self.num = n

self.denom = d

6.100L Lecture 18

13

MULTIPLY FRACTIONS

6.100L Lecture 18

class SimpleFraction(object):

def __init__(self, n, d):
self.num = n

self.denom = d

def times(self, oth):
top = self.num*oth.num
bottom = self.denom*oth.denom
return top/bottom

14

ADD FRACTIONS

6.100L Lecture 18

class SimpleFraction(object):

def __init__(self, n, d):
self.num = n

self.denom = d

………

def plus(self, oth):
top = self.num*oth.denom + self.denom*oth.num
bottom = self.denom*oth.denom
return top/bottom

15

LET’S TRY IT OUT

f1 = SimpleFraction(3, 4)

f2 = SimpleFraction(1, 4)

print(f1.num)

print(f1.denom)

print(f1.plus(f2))

print(f1.times(f2))

6.100L Lecture 18

3

4

1.0

0.1875

16

YOU TRY IT!
 Add two methods to invert fraction object according to the specs below:

class SimpleFraction(object):

""" A number represented as a fraction """

def __init__(self, num, denom):
self.num = num

self.denom = denom

def get_inverse(self):
""" Returns a float representing 1/self """

pass

def invert(self):
""" Sets self's num to denom and vice versa.

Returns None. """

pass

Example:

f1 = SimpleFraction(3,4)

print(f1.get_inverse()) # prints 1.33333333 (note this one returns value)

f1.invert() # acts on data attributes internally, no return

print(f1.num, f1.denom) # prints 4 3

6.100L Lecture 18

17

LET’S TRY IT OUT WITH MORE
THINGS

f1 = SimpleFraction(3, 4)

f2 = SimpleFraction(1, 4)

print(f1.num)

print(f1.denom)

print(f1.plus(f2))

print(f1.times(f2))

print(f1)

print(f1 * f2)

6.100L Lecture 18

3

4

1.0

0.1875

<__main__.SimpleFraction object at 0x00000234A8C41DF0>
Error!

18

SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

 +, -, ==, <, >, len(), print, and many others are
shorthand notations

 Behind the scenes, these get replaced by a method!

https://docs.python.org/3/reference/datamodel.html#basic-customization

 Can override these to work with your class

6.100L Lecture 18

19

https://docs.python.org/3/reference/datamodel.html#basic-customization

SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

 Define them with double underscores before/after
__add__(self, other) self + other
__sub__(self, other) self - other
__mul__(self, other) self * other
__truediv__(self, other) self / other
__eq__(self, other) self == other
__lt__(self, other) self < other
__len__(self) len(self)
__str__(self) print(self)
__float__(self) float(self) i.e cast
__pow__ self**other

... and others

6.100L Lecture 18

20

PRINTING OUR OWN
DATA TYPES

6.100L Lecture 18

21

PRINT REPRESENTATION OF AN
OBJECT

>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

 Uninformative print representation by default

 Define a __str__ method for a class

 Python calls the __str__ method when used with
print on your class object

 You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)
<3,4>

6.100L Lecture 18

22

DEFINING YOUR OWN PRINT
METHOD

class Coordinate(object):
def __init__(self, xval, yval):

self.x = xval
self.y = yval

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):
return "<"+str(self.x)+","+str(self.y)+">"

6.100L Lecture 18

23

WRAPPING YOUR HEAD AROUND
TYPES AND CLASSES

 Can ask for the type of an object instance
>>> c = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class __main__.Coordinate>

 This makes sense since
>>> print(Coordinate)
<class __main__.Coordinate>
>>> print(type(Coordinate))
<type 'type'>

 Use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

6.100L Lecture 18

24

EXAMPLE: FRACTIONS WITH
DUNDER METHODS

 Create a new type to represent a number as a fraction

 Internal representation is two integers
• Numerator

• Denominator

 Interface a.k.a. methods a.k.a how to interact with
Fraction objects

• Add, sub, mult, div to work with +, -, *, /

• Print representation, convert to a float

• Invert the fraction

 Let’s write it together!

6.100L Lecture 18

25

CREATE & PRINT INSTANCES

class Fraction(object):

def __init__(self, n, d):
self.num = n

self.denom = d

def __str__(self):
return str(self.num) + "/" + str(self.denom)

6.100L Lecture 18

26

LET’S TRY IT OUT

f1 = Fraction(3, 4)

f2 = Fraction(1, 4)

f3 = Fraction(5, 1)

print(f1)

print(f2)

print(f3)

6.100L Lecture 18

3/4

1/4

5/1

Ok, but looks weird!

27

YOU TRY IT!

 Modify the str method to represent the Fraction as just the
numerator, when the denominator is 1. Otherwise its
representation is the numerator then a / then the denominator.

6.100L Lecture 18

class Fraction(object):
def __init__(self, num, denom):

self.num = num
self.denom = denom

def __str__(self):
return str(self.num) + "/" + str(self.denom)

Example:
a = Fraction(1,4)
b = Fraction(3,1)
print(a) # prints 1/4
print(b) # prints 3

28

IMPLEMENTING
+ - * /
float()

6.100L Lecture 18

29

COMPARING METHOD vs.
DUNDER METHOD

6.100L Lecture 18

class SimpleFraction(object):

def __init__(self, n, d):

self.num = n

self.denom = d

………

def times(self, oth):

top = self.num*oth.num

bottom = self.denom*oth.denom

return top/bottom

class Fraction(object):

def __init__(self, n, d):

self.num = n

self.denom = d

………

def __mul__(self, other):

top = self.num*other.num

bottom = self.denom*other.denom

return Fraction(top, bottom)

30

LETS TRY IT OUT

a = Fraction(1,4)

b = Fraction(3,4)

print(a)

c = a * b

print(c)

6.100L Lecture 18

1/4

3/16

31

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmrafisher.weebly.com%2Fthe-learning-never-stops%2Ffractions-and-decimals&psig=AOvVaw0d3o0Oh_emlhOIugEHd-Xs&ust=1632233956886000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCND1kcDfjfMCFQAAAAAdAAAAABAh

CLASSES CAN HIDE DETAILS

 These are all equivalent

print(a * b)

print(a.__mul__(b))

print(Fraction.__mul__(a, b))

 Every operation in Python
comes back to a method call

 The first instance makes clear
the operation, without worrying
about the internal details!
Abstraction at work

6.100L Lecture 18

32

BIG IDEA
Special operations we’ve
been using are just
methods behind the
scenes.
Things like:
print, len
+, *, -, /, <, >, <=, >=, ==, !=
[]
and many others!

6.100L Lecture 18

33

CAN KEEP BOTH OPTIONS BY ADDING
A METHOD TO CAST TO A float

class Fraction(object):

def __init__(self, n, d):
self.num = n

self.denom = d

………

def __float__(self):
return self.num/self.denom

c = a * b

print(c)

print(float(c))

6.100L Lecture 18

3/16

0.1875

34

LETS TRY IT OUT SOME MORE

a = Fraction(1,4)

b = Fraction(2,3)

c = a * b

print(c)

 Not quite what we might expect? It’s not reduced.

 Can we fix this?

6.100L Lecture 18

2/12

35

ADD A METHOD
class Fraction(object):
………
def reduce(self):
def gcd(n, d):
while d != 0:

(d, n) = (n%d, d)
return n

if self.denom == 0:
return None

elif self.denom == 1:
return self.num

else:
greatest_common_divisor = gcd(self.num, self.denom)
top = int(self.num/greatest_common_divisor)
bottom = int(self.denom/greatest_common_divisor)
return Fraction(top, bottom)

c = a*b
print(c)
print(c.reduce())

6.100L Lecture 18

2/12
1/6 36

class Fraction(object):
…………
def reduce(self):
def gcd(n, d):
while d != 0:

(d, n) = (n%d, d)
return n

if self.denom == 0:
return None

elif self.denom == 1:
return self.num

else:
greatest_common_divisor = gcd(self.num, self.denom)
top = int(self.num/greatest_common_divisor)
bottom = int(self.denom/greatest_common_divisor)
return Fraction(top, bottom)

WE HAVE SOME IMPROVEMENTS TO MAKE

6.100L Lecture 18

s

37

CHECK THE TYPES, THEY’RE DIFFERENT

a = Fraction(4,1)

b = Fraction(3,9)

ar = a.reduce()

br = b.reduce()

print(ar, type(ar))

print(br, type(br))

c = ar * br

6.100L Lecture 18

4

1/3

4 <class 'int'>

1/3 <class '__main__.Fraction'>

38

YOU TRY IT!

 Modify the code to return a Fraction object when denominator
is 1

6.100L Lecture 18

class Fraction(object):
def reduce(self):

def gcd(n, d):
while d != 0:

(d, n) = (n%d, d)
return n

if self.denom == 0:
return None

elif self.denom == 1:
return self.num

else:
greatest_common_divisor = gcd(self.num, self.denom)
top = int(self.num/greatest_common_divisor)
bottom = int(self.denom/greatest_common_divisor)
return Fraction(top, bottom)

Example:
f1 = Fraction(5,1)
print(f1.reduce()) # prints 5/1 not 5

39

WHY OOP and BUNDLING THE
DATA IN THIS WAY?

 Code is organized and modular

 Code is easy to maintain

 It’s easy to build upon objects to make more complex objects

 Decomposition and abstraction at work with Python classes
 Bundling data and behaviors means you can use objects consistently

 Dunder methods are abstracted by common operations, but they’re
just methods behind the scenes!

6.100L Lecture 18

40

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

41

https://ocw.mit.edu
https://ocw.mit.edu/terms

INHERITANCE
(download slides and .py files to follow along)

6.100L Lecture 19

Ana Bell

1

 Mimic real life

 Group different objects part of the same type

6.100L Lecture 19

WHY USE OOP AND
CLASSES OF OBJECTS?

Images © sources unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

2

https://ocw.mit.edu/help/faq-fair-use/

WHY USE OOP AND
CLASSES OF OBJECTS?

 Mimic real life

 Group different objects part of the same type

6.100L Lecture 19

Images © sources unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

https://ocw.mit.edu/help/faq-fair-use/

GROUPS OF OBJECTS HAVE ATTRIBUTES
(RECAP)

 Data attributes
 How can you represent your object with data?

 What it is
for a coordinate: x and y values
for an animal: age

 Procedural attributes (behavior/operations/methods)

 How can someone interact with the object?

 What it does
for a coordinate: find distance between two
for an animal: print how long it’s been alive

6.100L Lecture 19

4

HOW TO DEFINE A CLASS (RECAP)

class Animal(object):

def __init__(self, age):

self.age = age

self.name = None

myanimal = Animal(3)

6.100L Lecture 19

5

GETTER AND SETTER METHODS

class Animal(object):

def __init__(self, age):
self.age = age

self.name = None
def __str__(self):

return "animal:"+str(self.name)+":"+str(self.age)

 Getters and setters should be used outside of class to

access data attributes

6.100L Lecture 19

6

GETTER AND SETTER METHODS

class Animal(object):

def __init__(self, age):
self.age = age

self.name = None
def __str__(self):

return "animal:"+str(self.name)+":"+str(self.age)
def get_age(self):

return self.age
def get_name(self):

return self.name
def set_age(self, newage):

self.age = newage

def set_name(self, newname=""):
self.name = newname

 Getters and setters should be used outside of class to

access data attributes

6.100L Lecture 19

7

AN INSTANCE and
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object

a = Animal(3)

 Dot notation used to access attributes (data and methods)

though it is better to use getters and setters to access data

attributes

a.age

a.get_age()

6.100L Lecture 19

8

INFORMATION HIDING

 Author of class definition may change data attribute variable

names

class Animal(object):

def __init__(self, age):
self.years = age

def get_age(self):
return self.years

 If you are accessing data attributes outside the class and class

definition changes, may get errors

 Outside of class, use getters and setters instead

 Use a.get_age() NOT a.age
 good style

 easy to maintain code

 prevents bugs

6.100L Lecture 19

9

CHANGING INTERNAL REPRESENTATION

class Animal(object):

def __init__(self, age):
self.years = age

self.name = None
def __str__(self):

return "animal:"+str(self.name)+":"+str(self.age)
def get_age(self):

return self.years
def set_age(self, newage):

self.years = newage

a.get_age() # works

a.age # error

 Getters and setters should be used outside of class to

access data attributes
6.100L Lecture 19

10

PYTHON NOT GREAT AT
INFORMATION HIDING

 Allows you to access data from outside class definition

print(a.age)

 Allows you to write to data from outside class definition

a.age = 'infinite'

 Allows you to create data attributes for an instance from

outside class definition

a.size = "tiny"

 It’s not good style to do any of these!

6.100L Lecture 19

11

USE OUR NEW CLASS

def animal_dict(L):

""" L is a list

Returns a dict, d, mappping an int to an Animal object.

A key in d is all non-negative ints, n, in L. A value

corresponding to a key is an Animal object with n as its age. """

d = {}

for n in L:

if type(n) == int and n >= 0:

d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

6.100L Lecture 19

12

USE OUR NEW CLASS

 Python doesn’t know how to call print recursively
def animal_dict(L):

""" L is a list

Returns a dict, d, mappping an int to an Animal object.

A key in d is all non-negative ints n L. A value corresponding

to a key is an Animal object with n as its age. """

d = {}

for n in L:

if type(n) == int and n >= 0:

d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L)

print(animals)

6.100L Lecture 19

13

USE OUR NEW CLASS

def animal_dict(L):

""" L is a list

Returns a dict, d, mappping an int to an Animal object.

A key in d is all non-negative ints n L. A value corresponding

to a key is an Animal object with n as its age. """

d = {}

for n in L:

if type(n) == int and n >= 0:

d[n] = Animal(n)

return d

L = [2,5,'a',-5,0]

animals = animal_dict(L)

for n,a in animals.items():

print(f'key {n} with val {a}')

6.100L Lecture 19

14

YOU TRY IT!

 Write a function that meets this spec.

def make_animals(L1, L2):

""" L1 is a list of ints and L2 is a list of str

L1 and L2 have the same length

Creates a list of Animals the same length as L1 and L2.

An animal object at index i has the age and name

corresponding to the same index in L1 and L2, respectively. """

#For example:

L1 = [2,5,1]

L2 = ["blobfish", "crazyant", "parafox"]

animals = make_animals(L1, L2)

print(animals) # note this prints a list of animal objects

for i in animals: # this loop prints the individual animals

print(i)

6.100L Lecture 19

15

BIG IDEA
Access data attributes
(stuff defined by self.xxx)

through methods – it’s
better style.

6.100L Lecture 19

16

HIERARCHIES

6.100L Lecture 19

Images © sources unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

17

https://ocw.mit.edu/help/faq-fair-use/

Animal

Cat RabbitPerson

HIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)

• Inherits all data and

behaviors of parent

class

• Add more info
• Add more behavior
• Override behavior Student

6.100L Lecture 19

18

INHERITANCE:
PARENT CLASS

class Animal(object):

def __init__(self, age):
self.age = age

self.name = None
def get_age(self):

return self.age
def get_name(self):

return self.name
def set_age(self, newage):

self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

6.100L Lecture 19

19

SUBCLASS CAT

6.100L Lecture 19

20

class Cat(Animal):

def speak(self):
print("meow")

def __str__(self):
return "cat:"+str(self.name)+":"+str(self.age)

 Add new functionality with speak()

 Instance of type Cat can be called with new methods

 Instance of type Animal throws error if called with Cat’s new

method

 __init__ is not missing, uses the Animal version

INHERITANCE:
SUBCLASS

6.100L Lecture 19

21

WHICH METHOD
TO USE?

 Subclass can have methods with same name as superclass

 For an instance of a class, look for a method name in current
class definition

 If not found, look for method name up the hierarchy (in parent,

then grandparent, and so on)

 Use first method up the hierarchy that you found with that

method name

6.100L Lecture 19

22

SUBCLASS PERSON

6.100L Lecture 19

23

class Person(Animal):

def __init__(self, name, age):
Animal.__init__(self, age)
self.set_name(name)
self.friends = []

def get_friends(self):
return self.friends.copy()

def add_friend(self, fname):
if fname not in self.friends:

self.friends.append(fname)
def speak(self):

print("hello")

def age_diff(self, other):
diff = self.age - other.age

print(abs(diff), "year difference")

def __str__(self):
return "person:"+str(self.name)+":"+str(self.age)

6.100L Lecture 19

24

YOU TRY IT!

 Write a function according to this spec.

def make_pets(d):

""" d is a dict mapping a Person obj to a Cat obj

Prints, on each line, the name of a person, a colon, and the

name of that person's cat """

pass

p1 = Person("ana", 86)

p2 = Person("james", 7)

c1 = Cat(1)

c1.set_name("furball")

c2 = Cat(1)

c2.set_name("fluffsphere")

d = {p1:c1, p2:c2}

make_pets(d) # prints ana:furball

james:fluffsphere

6.100L Lecture 19

25

BIG IDEA
A subclass can
use a parent’s attributes,
override a parent’s attributes, or
define new attributes.
Attributes are either data or methods.

6.100L Lecture 19

26

SUBCLASS STUDENT

6.100L Lecture 19

27

import random

class Student(Person):

def __init__(self, name, age, major=None):
Person.__init__(self, name, age)
self.major = major

def change_major(self, major):
self.major = major

def speak(self):
r = random.random()

if r < 0.25:

print("i have homework")

elif 0.25 <= r < 0.5:

print("i need sleep")

elif 0.5 <= r < 0.75:

print("i should eat")

else:

print("i'm still zooming")

def __str__(self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

6.100L Lecture 19

28

SUBCLASS RABBIT

6.100L Lecture 19

29

CLASS VARIABLES AND THE Rabbit
SUBCLASS

 Class variables and their values are shared between all

instances of a class

class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None,parent2=None):

Animal.__init__(self, age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

 tag used to give unique id to each new rabbit instance

6.100L Lecture 19

30

6.100L Lecture 19

r1 = Rabbit(8)

Rabbit.tag 1

r1
Age: 8

Parent1: None

Parent2: None

Rid: 1

2

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

31

6.100L Lecture 19

r1 = Rabbit(8)

r2 = Rabbit(6)

Rabbit.tag 1

r1
Age: 8

Parent1: None

Parent2: None

Rid: 1

r2
Age: 6

Parent1: None

Parent2: None

Rid: 2

23

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

32

6.100L Lecture 19

r1 = Rabbit(8)

r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8

Parent1: None

Parent2: None

Rid: 1

r2
Age: 6

Parent1: None

Parent2: None

Rid: 2

23

r3
Age: 10

Parent1: None

Parent2: None

Rid: 3

4

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

33

Rabbit GETTER METHODS

class Rabbit(Animal):

tag = 1

def __init__(self, age, parent1=None, parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag

Rabbit.tag += 1

def get_rid(self):
return str(self.rid).zfill(5)

def get_parent1(self):
return self.parent1

def get_parent2(self):
return self.parent2

6.100L Lecture 19

34

WORKING WITH YOUR OWN
TYPES

def __add__(self, other):

returning object of same type as this class

return Rabbit(0, self, other)

 Define + operator between two Rabbit instances

 Define what something like this does: r4 = r1 + r2
where r1 and r2 are Rabbit instances

 r4 is a new Rabbit instance with age 0

 r4 has self as one parent and other as the other parent

 In __init__, parent1 and parent2 are of type Rabbit

6.100L Lecture 19

recall Rabbit’s __init__(self, age, parent1=None, parent2=None)

35

6.100L Lecture 19

r1 = Rabbit(8)

r2 = Rabbit(6)

r3 = Rabbit(10)

Rabbit.tag 1

r1
Age: 8

Parent1: None

Parent2: None

Rid: 1

r2
Age: 6

Parent1: None

Parent2: None

Rid: 2

23

r3
Age: 10

Parent1: None

Parent2: None

Rid: 3

4

r4 = r1 + r2

r4

Age: 0

Parent1: obj bound to r1

Parent2: obj bound to r2

Rid: 4

5

RECALL THE __init__ OF Rabbit

def __init__(self, age, parent1=None,parent2=None):
Animal.__init__(self, age)
self.parent1 = parent1
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

36

SPECIAL METHOD TO COMPARE TWO
Rabbits

 Decide that two rabbits are equal if they have the same two
parents

def __eq__(self, other):
parents_same = (self.p1.rid == oth.p1.rid and self.p2.rid == oth.p2.rid)
parents_opp = (self.p2.rid == oth.p1.rid and self.p1.rid == oth.p2.rid)
return parents_same or parents_opp

 Compare ids of parents since ids are unique (due to class var)

 Note you can’t compare objects directly

 For ex. with self.parent1 == other.parent1

 This calls the __eq__ method over and over until call it on None and

gives an AttributeError when it tries to do None.parent1

6.100L Lecture 19

37

BIG IDEA
Class variables are
shared between all
instances.
If one instance changes it, it’s changed for every instance.

6.100L Lecture 19

38

OBJECT ORIENTED
PROGRAMMING

 Create your own collections of data

 Organize information

 Division of work

 Access information in a consistent manner

 Add layers of complexity

 Hierarchies

 Child classes inherit data and methods from parent classes

 Like functions, classes are a mechanism for decomposition and

abstraction in programming

6.100L Lecture 19

39

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

40

https://ocw.mit.edu
https://ocw.mit.edu/terms

FITNESS TRACKER
OBJECT ORIENTED

PROGRAMMING EXAMPLE
(download slides and .py files to follow along)

6.100L Lecture 20

Ana Bell

1

IMPLEMENTING USING
THE CLASS vs THE CLASS

Implementing a new
object type with a class

 Define the class
 Define data attributes

(WHAT IS the object)
 Define methods

(HOW TO use the object)

Class abstractly captures
common properties and
behaviors

6.100L Lecture 20

Using the new object type in
code
• Create instances of the

object type
• Do operations with them

Instances have specific
values for attributes

Two different coding perspectives
2

Workout Tracker Example

6.100L Lecture 20

 Suppose we are writing a program to track workouts,
e.g., for a smart watch

Different kinds of workouts

Thanks to Sam Madden for this OOP
example (his slides have been modified)

Apple Watch and fitness tracker screens © Apple. Fitbit © Fitbit Inc.
Garmin watch © Garmin. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

Fitness Tracker

6.100L Lecture 20

Different types of workouts

Common properties:
Icon Kind
Date Start Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

4

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

 Data attributes
• How can you represent your object with data?
• What it is
• for a coordinate: x and y values
• for a workout: start time, end time, calories

 Functional attributes (behavior/operations/methods)
• How can someone interact with the object?
• What it does
• for a coordinate: find distance between two
• for a workout: display an information card

6.100L Lecture 20

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/5

DEFINE A SIMPLE CLASS (RECAP)

class Workout(object):

def __init__(self, start, end, calories):

self.start = start

self.end = end

self.calories = calories

self.icon = '😓😓'

self.kind = 'Workout'

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

6

GETTER AND SETTER METHODS (RECAP)
class Workout(object):

def __init__(self, start, end, calories):
self.start = start
self.end = end
self.calories = calories
self.icon = '😓😓'
self.kind = 'Workout'

def get_calories(self):
return self.calories

def get_start(self):
return self.start

def get_end(self):
return self.end

def set_calories(self, calories):
self.calories = calories

def set_start(self, start):
self.start = start

def set_end(self, end):
self.end = end

Getters and setters used outside of class to access data attributes
6.100L Lecture 20

7

Accessed via
“self” keyword

Class State
Dictionary

SELF PROVIDES ACCESS TO CLASS
STATE

6.100L Lecture 20

Workout

Class

get_calories()

get_end()

__init__()

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

start

end

calories

my_workout

an instance

Instance State
Dictionary

Demo

get_start()

set_calories()

set_start()

set_end()

icon

kind

8

AN INSTANCE and
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object
myWorkout = Workout('9/30/2021 1:35 PM', '9/30/2021 1:57 PM', 200)

 Dot notation used to access attributes (data and methods)

 It’s better to use getters and setters to access data attributes

my_workout.calories

my_workout.get_calories()

6.100L Lecture 20

9

WHY INFORMATION HIDING?

 Keep the interface of your class as simple as possible

 Use getters & setters, not attributes
 i.e., get_calories() method NOT calories attribute

 Prevents bugs due to changes in implementation

 May seem inconsequential in small programs, but for
large programs complex interfaces increase the potential
for bugs

 If you are writing a class for others to use, you are
committing to maintaining its interface!

6.100L Lecture 20

10

CHANGING THE CLASS
IMPLEMENTATION

 Author of class definition may change internal
representation or implementation
 Use a class variable
 Now get_calories estimates calories based of workout

duration if calories are not passed in

 If accessing data attributes outside the class and class
implementation changes, may get errors

6.100L Lecture 20

11

CHANGING THE CLASS
IMPLEMENTATION

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories=None):
self.start = parser.parse(start)

self.end = parser.parse(end)

self.calories = calories # may be None

self.icon = '😓😓'

self.kind = 'Workout'

def get_calories(self):
if (calories == None):

return Workout.cal_per_hr*(self.end-self.start).total_seconds()/3600
else:

return self.calories

6.100L Lecture 20

Demo

12

ASIDE: datetime OBJECTS
OTHER PYTON LIBRARIES

 Takes the string representing the date and time and converts it
to a datetime object

from dateutil import parser

start = '9/30/2021 1:35 PM'

end = '9/30/2021 1:45 PM'

start_date = parser.parse(start)

end_date = parser.parse(end)

type(start_date)

 Why do this? Because it makes operations with dates easy!
The datetime object takes care of everything

print((end_date-start_date).total_seconds())

6.100L Lecture 20

13

CLASS VARIABLES LIVE IN CLASS
STATE DICTIONARY

6.100L Lecture 20

Accessed via
“self” keyword

Workout

Class

get_calories()

get_end()

__init__()

start

end

calories

my_workout

an instance

Instance State
DictionaryClass State

Dictionary

get_start()

set_calories()

set_start()

set_end()
icon

kind

cal_per_hr

14

CLASS VARIABLES

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories):
…

print(Workout.cal_per_hr)

w = Workout('1/1/2021 2:34', '1/1/2021 3:35', None)

print(w.cal_per_hr)

Workout.cal_per_hr = 250
print(w.cal_per_hr)

6.100L Lecture 20

Associate a class variable with all instances of a class

Warning: if an instance changes the class variable, it’s
changed for all instances

15

YOU TRY IT!
 Write lines of code to create two Workout objects.

 One Workout object saved as variable w_one,
from Jan 1 2021 at 3:30 PM until 4 PM.
You want to estimate the calories from this workout.
Print the number of calories for w_one.

 Another Workout object saved as w_two,
from Jan 1 2021 at 3:35 PM until 4 PM.
You know you burned 300 calories for this workout.
Print the number of calories for w_two.

6.100L Lecture 20

16

NEXT UP: CLASS HIERARCHIES

6.100L Lecture 20

17

WorkoutHIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)
• Inherits all data and

behaviors of parent
class

• Add more info
• Add more behavior
• Override behavior

Indoor
Workout

Outdoor
Workout

6.100L Lecture 20

Treadmill

Running

Weights

Swimming

18

Fitness Tracker

6.100L Lecture 20

Different kinds of workouts

Common properties:
Icon Kind
Date Start
Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

19

INHERITANCE:
PARENT CLASS

class Workout(object):

cal_per_hr = 200

def __init__(self, start, end, calories=None):
…

 Everything is an object

 Class object implements basic operations in Python, e.g.,

binding variables

6.100L Lecture 20

20

class RunWorkout(Workout):

def __init__(self, start, end, elev=0, calories=None):
super().__init__(start,end,calories)

self.icon = '�'

self.kind = 'Running'

self.elev = elev

def get_elev(self):
return self.elev

def set_elev(self, e):
self.elev = e

INHERITANCE:
SUBCLASS

Add new functionality e.g., get_elev()
• New methods can be called on instance of type RunWorkout
• __init__ uses super() to setup Workout base instance (can also

call Workout.__init__(start,end,calories) directly
6.100L Lecture 20

21

start

end

calories

icon

kind

INHERITANCE REPRESENTATION
IN MEMORY

6.100L Lecture 20

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

Demo

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

22

WHY USE INHERITENCE?

 Improve clarity
 Commonalities are explicit in parent class
 Differences are explicit in subclass

 Reuse code

 Enhance modularity
 Can pass subclasses to any method that uses parent

6.100L Lecture 20

23

 Complex print function shared by all subclasses

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

class Workout(object)
………

def __str__(self):
width = 16
retstr = f"|{'–'*width}|\n"
retstr += f"|{' ' *width}|\n"
iconLen = 0
retstr += f"| {self.icon}{' '*(width-3)}|\n"
retstr += f"| {self.kind}{' '*(width-len(self.kind)-1)}|\n"
retstr += f"|{' ' *width}|\n"
duration_str = str(self.get_duration())
retstr += f"| {duration_str}{' '*(width-len(duration_str)-1)}|\n"
cal_str = f"{self.get_calories():.0f}"
retstr += f"| {cal_str} Calories {' '*(width-len(cal_str)-11)}|\n"

retstr += f"|{' ' *width}|\n"
retstr += f"|{'_'*width}|\n"

return retstr

outputs

24

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

w=Workout(…)
rw=RunWorkout(…)
sw=SwimWorkout(…)

print(w)
print(rw)
print(sw)

Demo

25

WHERE CAN I USE AN INSTANCE
OF A CLASS?

 We can use an instance of RunWorkout anywhere Workout can
be used
 Opposite is not true (cannot use Workout anywhere
RunWorkout is used)
 Consider two helper functions

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

26

WHERE CAN I USE AN INSTANCE
OF A CLASS?

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

w1 = Workout('9/30/2021 1:35 PM','9/30/2021 2:05 PM')

w2 = Workout('9/30/2021 4:35 PM','9/30/2021 5:05 PM')

rw1 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 100)

rw2 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 200)

total_calories([w1,w2,rw1,rw2])) # (1) # cal = 100+100+400+400

total_elevation([rw1,rw2])) # (2) # elev = 100+200

total_elevation([w1,rw1]) # (3) # err! w1 has no elev method

Demo

27

YOU TRY IT!
 For each line creating on object below, tell me:

 What is the calories val through get_calories()
 What is the elevation val through get_elev()

w1 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM')

w2 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',450)

rw1 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250)

rw2 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250,300)

rw3 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',calories=300)

6.100L Lecture 20

28

OVERRIDING SUPERCLASSES

 Overriding superclass – add calorie calculation w/ distance

6.100L Lecture 20

class RunWorkout(Workout):
cals_per_km = 100

…

def get_calories(self):
if (self.route_gps_points != None):

dist = 0
lastP = self.routeGpsPoints[0]
for p in self.routeGpsPoints[1:]:

dist += gpsDistance(lastP,p)
lastP = p

return dist * RunWorkout.cals_per_km
else:

return super().get_calories()

Demo

29

start

end

calories

icon

kind

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

OVERRIDDEN METHODS IN
MEMORY

6.100L Lecture 20

cals_per_km

get_calories()

30

WHICH METHOD
WILL BE CALLED?

• Overriding: subclass methods
with same name as superclass
• For an instance of a class, look

for a method name in current
class definition
• If not found, look for method

name up the hierarchy (in
parent, then grandparent, and
so on)
• Use first method up the

hierarchy that you found with
that method name

6.100L Lecture 20

Workout

Indoor
Workout

Outdoor
Workout

Treadmill

Running

Weights

Swimming

get_calories()?

get_calories()?

get_calories()

31

TESTING EQUALITY WITH
SUBCLASSES

 With subclasses, often want to ensure base class is equal, in
addition to new properties in the subclass

6.100L Lecture 20

class Workout(object):
……

def __eq__(self, other):
return type(self) == type(other) and \

self.startDate == other.startDate and \
self.endDate == other.endDate and \
self.kind == other.kind and \
self.get_calories() == other.get_calories()

class RunWorkout(Workout):
……

def __eq__(self,other):
return super().__eq__(other) and self.elev == other.elev

Demo

32

OBJECT ORIENTED DESIGN:
MORE ART THAN SCIENCE

 OOP is a powerful tool for modularizing your code and grouping state
and functions together

BUT
 It’s possible to overdo it

 New OOP programmers often create elaborate class hierarchies
 Not necessarily a good idea
 Think about the users of your code

Will your decomposition make sense to them?
 Because the function that is invoked is implicit in the class hierarchy, it can

sometimes be difficult to reason about control flow

 The Internet is full of opinions OOP and “good software design” – you
have to develop your own taste through experience!

6.100L Lecture 20

33

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

34

https://ocw.mit.edu
https://ocw.mit.edu/terms

TIMING PROGRAMS,

COUNTING OPERATIONS
(download slides and .py files to follow along)

6.100L Lecture 21
Ana Bell

1

WRITING EFFICIENT PROGRAMS

 So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.
 Problems can be very complex

 But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data

6.100L Lecture 21
2

EFFICIENCY IS IMPORTANT

 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later
 Think Fibonacci recursive vs. Fibonacci with memoization

 Challenges in understanding efficiency
 A program can be implemented in many different ways

 You can solve a problem using only a handful of different
algorithms

 Want to separate choice of implementation from choice
of more abstract algorithm

6.100L Lecture 21
3

EVALUATING PROGRAMS

 Measure with a timer
 Count the operations
 Abstract notion of order of growth

6.100L Lecture 21
4

6.0001 LECTURE 9

ASIDE on MODULES

 A module is a set of python definitions in a file
 Python provides many useful modules: math, plotting/graphing, random

sampling for probability, statistical tools, many others

 You first need to “import” the module into your environment
import time
import random
import dateutil
import math

 Call functions from inside the module using the module’s name
and dot notation
math.sin(math.pi/2)

6.100L Lecture 21
5

TIMING

6.100L Lecture 21
6

TIMING A PROGRAM

 Use time module
 Recall that

importing means to
bring in that class
into your own file

 Start clock
 Call function
 Stop clock

import time

def c_to_f(c):
return c*9.0/5 + 32

tstart = time.time()

c_to_f(37)

dt = time.time() - tstart

print(dt, "s,")

6.100L Lecture 21
7

TIMNG c_to_f

 Very fast, can’t even time it accurately

6.100L Lecture 21
8

TIMING mysum

 As the input increases, the time it takes also increases
 Pattern?

 0.009 to 0.05 to 0.5 to 5 to ??

6.100L Lecture 21
9

TIMING square

 As the input increases the time it takes also increases
 square called with 100000 did not finish within a reasonable

amount of time
 Maybe we can guess a pattern if we are patient for one more

round?

6.100L Lecture 21
10

6.0001 LECTURE 8

TIMING PROGRAMS IS

INCONSISTENT

 GOAL: to evaluate different algorithms
 Running time should vary between algorithms
 Running time should not vary between implementations
 Running time should not vary between computers
 Running time should not vary between languages
Running time is should be predictable for small inputs

 Time varies for different inputs but
cannot really express a relationship
between inputs and time needed
Can only be measured a posteriori

6.100L Lecture 21
11

COUNTING

6.100L Lecture 21
12

COUNTING

OPERATIONS

 Assume these steps take
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in memory

 Count number of
operations executed as
function of size of input

def c_to_f(c):
return c*9.0/5 + 32

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

def square(n):
sqsum = 0
for i in range(n):

for j in range(n):
sqsum += 1

return sqsum

6.100L Lecture 21

mysum 1+(x+1)*(1+2) = 3x+4 ops

c_to_f 3 ops

square 1+n*(1)*n*(1+2) = 3n2 + 1 ops

13

COUNTING c_to_f

 No matter what the input is, the number of operations is the
same

6.100L Lecture 21
14

COUNTING mysum

 As the input increases by 10, the number if operations ran is
approx. 10 times more.

6.100L Lecture 21
15

COUNTING square

 As the input increases
by 10, the number of
operations is approx.
100 times more.

 As the input increases
by 2, the number of
operations is approx.
4 times more.

6.100L Lecture 21
16

6.0001 LECTURE 8

COUNTING OPERATIONS IS

INDEPENDENT OF COMPUTER

VARIATIONS, BUT …

 GOAL: to evaluate different algorithms
 Running “time” should vary between algorithms
 Running “time” should not vary between implementations
 Running “time” should not vary between computers
 Running “time” should not vary between languages
 Running “time” is should be predictable for small inputs
 No real definition of which operations to count

 Count varies for different inputs and
can derive a relationship
between inputs and the count

6.100L Lecture 21
17

… STILL NEED A BETTER WAY

• Timing and counting evaluate implementations
• Timing and counting evaluate machines

• Want to evaluate algorithm
• Want to evaluate scalability
• Want to evaluate in terms of input size

6.100L Lecture 21
18

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

19

https://ocw.mit.edu
https://ocw.mit.edu/terms

BIG OH and THETA
(download slides and .py files to follow along)

6.100L Lecture 22
Ana Bell

1

TIMING

6.100L Lecture 22
2

6.0001 LECTURE 8

TIMING A PROGRAM

 Use time module
 Importing means

bringing collection
of functions into
your own file
 Start clock
 Call function
 Stop clock

import time

def convert_to_km(m):

return m * 1.609

t0 = time.perf_counter()

convert_to_km(100000)

dt = time.perf_counter() - t0

print("t =", dt, "s,")

6.100L Lecture 22
3

6.0001 LECTURE 9

EXAMPLE: convert_to_km, compound

 How long does it take to compute these functions?
 Does the time depend on the input parameters?
 Are the times noticeably different for these two

functions?

def convert_to_km(m):
return m * 1.609

def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total

6.100L Lecture 22
4

L_N = [1]
for i in range(7):

L_N.append(L_N[-1]*10)

for N in L_N:
t = time.perf_counter()
km = convert_to_km(N)
dt = time.perf_counter()-t
print(f"convert_to_km({N}) took {dt} seconds ({1/dt}/sec)")

6.0001 LECTURE 9

CREATING AN INPUT LIST

6.100L Lecture 22
5

RUN IT!
convert_to_km OBSERVATIONS

Observation: average time seems independent of size of argument

6.100L Lecture 22
6

6.0001 LECTURE 9

MEASURE TIME:
compoundwith a variable number of months

Observation 2: average time
seems to increase by 10 as size of
argument increases by 10

Observation 3: relationship
between size and time only
predictable for large sizes

compound(1) took 2.26e-06 seconds (441,696.12/sec)
compound(10) took 2.31e-06 seconds (433,839.48/sec)
compound(100) took 6.59e-06 seconds (151,676.02/sec)
compound(1000) took 5.02e-05 seconds (19,938.59/sec)
compound(10000) took 5.10e-04 seconds (1,961.80/sec)
compound(100000) took 5.14e-03 seconds (194.46/sec)
compound(1000000) took 4.79e-02 seconds (20.86/sec)
compound(10000000) took 4.46e-01 seconds (2.24/sec)

def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total

6.100L Lecture 22

Observation 1: Time grows with
the input only when n_months
changes

7

def sum_of(L):
total = 0.0
for elt in L:

total = total + elt
return total

L_N = [1]
for i in range(7):

L_N.append(L_N[-1]*10)

for N in L_N:
L = list(range(N))
t = time.perf_counter()
s = sum_of(L)
dt = time.perf_counter()-t
print(f"sum_of({N}) took {dt} seconds ({1/dt}/sec)")

6.0001 LECTURE 9

MEASURE TIME: sum over L
Observation 1: Size of the input is
now the length of the list, not
how big the element numbers are.

Observation 2: average time
seems to increase by 10 as size of
argument increases by 10

Observation 3: relationship
between size and time only
predictable for large sizes

Observation 4: Time seems
comparable to computation of
compound

6.100L Lecture 22
8

search each element one-by-one
def is_in(L, x):

for elt in L:
if elt==x:

return True
return False

search by bisecting the list (list should be sorted!)
def binary_search(L, x):

lo = 0
hi = len(L)
while hi-lo > 1:

mid = (hi+lo) // 2
if L[mid] <= x:

lo = mid
else:

hi = mid
return L[lo] == x

search using built-in operator
x in L

6.0001 LECTURE 9

MEASURE TIME: find element in a list

6.100L Lecture 22
9

6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

6.100L Lecture 22
10

6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

6.100L Lecture 22

Observation 2: built-in function grows by factor of 10, when L increases by 10

11

6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 3: binary search time seems almost independent of size

6.100L Lecture 22

Observation 2: built-in function grows by factor of 10, when L increases by 10

12

6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 4: binary search much faster than is_in, especially on larger problems

6.100L Lecture 22

Observation 3: binary search time seems almost independent of size

Observation 2: built-in function grows by factor of 10, when L increases by 10

13

6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 5: is_in is slightly slower than using Python’s “in” capability
6.100L Lecture 22

Observation 4: binary search much faster than is_in, especially on larger problems

Observation 3: binary search time seems almost independent of size

Observation 2: built-in function grows by factor of 10, when L increases by 10

14

6.0001 LECTURE 9

MEASURE TIME: find element in a list

So we have seen
computations where
time seems very
different
• Constant time
• Linear in size of

argument
• Something less than

linear?

6.100L Lecture 22

def is_in(L, x):
for elt in L:

if elt==x:
return True

return False

def binary_search(L, x):
lo = 0
hi = len(L)
while hi-lo > 1:

mid = (hi+lo) // 2
if L[mid] <= x:

lo = mid
else:

hi = mid
return L[lo] == x

15

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22

L=[(cos(0), sin(0)),
(cos(1), sin(1)),
(cos(2), sin(2)), ...] #example numbers

16

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
17

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
18

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
19

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
20

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
21

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
22

 Gets much slower as size of input grows
 Quadratic: for list of size len(L), does len(L)/2 operations

per element on average
 len(L) x len(L)/2 operations — worse than linear growth

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
23

6.100L Lecture 22

PLOT OF INPUT SIZE vs. TIME TO RUN

is_in
binary_search

diameter

linear logarithmic

quadratic

24

TWO DIFFERENT MACHINES
My old laptop My old desktop

Observation 1: even for the same code, the actual machine may affect speed.

~2x slower for large problems

Observation 2: Looking only at the relative increase in run time from a prev run,
if input is n times as big, the run time is approx. n times as long.

25

6.0001 LECTURE 9

DON’T GET ME WRONG!

 Timing is a critical tool to assess the performance of programs
 At the end of the day, it is irreplaceable for real-world

assessment

 But we will see a complementary tool (asymptotic complexity)
that has other advantages
 A priori evaluation (before writing or running code)
 Assesses algorithm independent of machine and

implementation (what is intrinsic efficiency of algorithm?)
 Provides direct insight into the design of efficient

algorithms

6.100L Lecture 22
26

COUNTING

6.100L Lecture 22
27

6.0001 LECTURE 8

COUNT OPERATIONS

 Assume these steps take
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in

memory
 Count number of these

operations executed as
function of size of input

def convert_to_km(m):

return m * 1.609

def sum_of(L):
total = 0
for i in L:

total += i
return total

sum_of 1+len(L)*3+1 = 3*len(L)+2 ops

6.100L Lecture 22

convert_to_km 2 ops

28

6.0001 LECTURE 9

COUNT OPERATIONS: is_in

def is_in_counter(L, x):
global count
count += 1 #return of value
for elt in L:

count += 2 # set elt, if == test
if elt==x:

return True
return False

6.100L Lecture 22
29

6.0001 LECTURE 9

COUNT OPERATIONS: is_in

def is_in_counter(L, x):
global count
count += 1
for elt in L:

count += 2
if elt==x:

return True
return False

6.100L Lecture 22
30

6.0001 LECTURE 9

COUNT OPERATIONS:
binary search

def binary_search_counter(L, x):
global count
lo = 0
hi = len(L)
count += 3
while hi-lo > 1:

count += 2
mid = (hi+lo) // 2
count += 3
if L[mid] <= x:

lo = mid
else:

hi = mid
count += 3

count += 3
return L[lo] == x

6.100L Lecture 22
31

6.0001 LECTURE 9

COUNT OPERATIONS

10/5/20

is_in testing
for 1 element, is_in used 9 operations
for 10 element, is_in used 37 operations
for 100 element, is_in used 307 operations
for 1000 element, is_in used 3007 operations
for 10000 element, is_in used 30007 operations
for 100000 element, is_in used 300007 operations
for 1000000 element, is_in used 3000007 operations

binary_search testing
for 1 element, binary search used 15 operations
for 10 element, binary search used 85 operations
for 100 element, binary search used 148 operations
for 1000 element, binary search used 211 operations
for 10000 element, binary search used 295 operations
for 100000 element, binary search used 358 operations
for 1000000 element, binary search used 421 operations

Observation 1: number of
operations for is_in increases by
10 as size increases by 10

Observation 2: but number
of operations for binary
search grows much more
slowly. Unclear at what rate.

6.100L Lecture 22
32

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F80443529%2Fcounting-on-fingers-counting-is-hard&psig=AOvVaw2N3L_6RHEdvsEcbX735Bf0&ust=1602001102034000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKj4ka3tnewCFQAAAAAdAAAAABAD

PLOT OF INPUT SIZE vs. OPERATION COUNT

6.100L Lecture 22
33

PROBLEMS WITH TIMING AND COUNTING

 Timing the exact running time of the program
• Depends on machine

• Depends on implementation

• Small inputs don’t show growth

 Counting the exact number of steps
• Gets us a formula!

• Machine independent, which is good
• Depends on implementation

• Multiplicative/additive constants are irrelevant for large inputs

 Want to:
 evaluate algorithm

 evaluate scalability

 evaluate in terms of input size

6.100L Lecture 22
34

EFFICIENCY IN TERMS OF INPUT: BIG-PICTURE
RECALL mysum (one loop) and square (nested loops)

 mysum(x)
 What happened to the program efficiency as x increased?
 10 times bigger x meant the program

 Took approx. 10 times as long to run
 Did approx. 10 times as many ops

 Express it in an “order of” way vs. the input variable: efficiency = Order of x

 square(x)
 What happened to the program efficiency as x increased?
 2 times bigger x meant the program

 Took approx. 4 times as long to run
 Did approx. 4 times as many ops

 10 times bigger x meant the program
 Took approx. 100 times as long to run
 Did approx. 100 times as many ops

 Express it in an “order of” way vs. the input variable: efficiency = Order of x2

6.100L Lecture 22
35

ORDER of GROWTH

6.100L Lecture 22
36

ORDERS OF GROWTH

 It’s a notation
 Evaluates programs when input is very big

 Expresses the growth of program’s run time

 Puts an upper bound on growth
 Do not need to be precise: “order of” not “exact” growth

 Focus on the largest factors in run time (which section of
the program will take the longest to run?)

6.100L Lecture 22
37

A BETTER WAY
A GENERALIZED WAY WITH APPROXIMATIONS

 Use the idea of counting operations in an algorithm, but not

worry about small variations in implementation

 When x is big, 3x+4 and 3x and x are pretty much the same!
 Don’t care about exact value: ops = 1+x(2+1)
 Express it in an “order of” way vs. the input: ops = Order of x

 Focus on how algorithm performs when size of problem gets

arbitrarily large

 Relate time needed to complete a computation against the

size of the input to the problem

 Need to decide what to measure. What is the input?

6.100L Lecture 22
38

6.0001 LECTURE 8

WHICH INPUT TO USE TO MEASURE EFFICIENCY

 Want to express efficiency in terms of input, so need to
decide what is your input

 Could be an integer
-- convert_to_km(x)

 Could be length of list
-- list_sum(L)

 You decide when multiple parameters to a function
-- is_in(L, e)
 Might be different depending on which input you consider

6.100L Lecture 22
39

6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 Does the program take longer to run as e increases?
 No

6.100L Lecture 22
40

6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 Does the program take longer to run as L increases?
 What if L has a fixed length and its elements are big numbers?

 No
 What if L has different lengths?

 Yes!

6.100L Lecture 22
41

6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 When e is first element in the list
 BEST CASE
 When look through about half of the elements in list
 AVERAGE CASE
 When e is not in list
 WORST CASE
 Want to measure this behavior in a general way

6.100L Lecture 22
42

6.0001 LECTURE 8

ASYMPTOTIC GROWTH

 Goal: describe how time grows as size of input grows
 Formula relating input to number of operations

 Given an expression for the number of operations needed to
compute an algorithm, want to know asymptotic behavior as size
of problem gets large
 Want to put a bound on growth
 Do not need to be precise: “order of” not “exact” growth

 Will focus on term that grows most rapidly
 Ignore additive and multiplicative constants, since want to know how

rapidly time required increases as we increase size of input

 This is called order of growth
 Use mathematical notions of “big O” and “big Θ”

Big Oh and Big Theta
6.100L Lecture 22

43

BIG O Definition

𝑔𝑔(𝑥𝑥) = 𝑥𝑥

Not an upper bound; as 𝑥𝑥 → ∞
f(x) will always exceed it

4𝑥𝑥2 > 3𝑥𝑥2 + 20𝑥𝑥 + 1∀𝑥𝑥 > 20.04

 Suppose some code runs in
𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 20𝑥𝑥 + 1 steps
Think of this as the formula from
counting the number of ops.

 Big OH is a way to upper bound the
growth of any function

 f(x) = O(g(x)) means that g(x) times
some constant eventually always
exceeds f(x)
Eventually means above some
threshold value of x

Crossover

Never
cross
again!

3𝑥𝑥2 + 20𝑥𝑥 + 1 = 𝑂𝑂(𝑥𝑥2)

6.100L Lecture 22
44

BIG O FORMALLY
 A big Oh bound is an upper bound on the growth of some function
 𝑓𝑓(𝑥𝑥) = 𝑂𝑂(𝒈𝒈(𝒙𝒙)) means there exist

constants 𝒄𝒄𝟎𝟎,𝒙𝒙𝟎𝟎 for which 𝒄𝒄𝟎𝟎𝒈𝒈(𝒙𝒙) ≥ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟎𝟎

Example: 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 20𝑥𝑥 + 1

𝑓𝑓(𝑥𝑥) = 𝑂𝑂(𝒙𝒙𝟐𝟐) ,because 𝟒𝟒 𝒙𝒙𝟐𝟐 > 𝟑𝟑𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟎𝟎𝒙𝒙+ 𝟏𝟏∀𝑥𝑥 ≥ 𝟐𝟐𝟏𝟏
(𝒄𝒄𝟎𝟎 = 𝟒𝟒,𝒙𝒙𝟎𝟎 = 𝟐𝟐𝟎𝟎.𝟎𝟎𝟒𝟒)

0 <= x <= 30 0 <= x <= 100

Crossover at
x=20.04

These lines
will never
cross again

orange > blue
for all x > 20.04)

6.100L Lecture 22
45

0 <= x <= 100

BIG Θ Definition

 A big Θ bound is a lower and upper bound on the growth of some function
Suppose 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 20𝑥𝑥 − 1

𝒇𝒇(𝒙𝒙) = Θ(𝒈𝒈(𝒙𝒙))means:
there exist constants 𝒄𝒄𝟎𝟎, 𝑥𝑥0 for which 𝒄𝒄𝟎𝟎𝒈𝒈(𝒙𝒙) ≥ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟎𝟎
and constants 𝒄𝒄𝟏𝟏, 𝑥𝑥1 for which 𝒄𝒄𝟏𝟏𝒈𝒈(𝒙𝒙) ≤ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟏𝟏

 Example, 𝒇𝒇(𝒙𝒙) = Θ(𝒙𝒙𝟐𝟐) because 𝟒𝟒𝒙𝒙𝟐𝟐 > 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟎𝟎𝒙𝒙 − 𝟏𝟏 ∀𝑥𝑥 ≥ 𝟎𝟎 (𝒄𝒄𝟎𝟎 = 𝟒𝟒,𝒙𝒙𝟎𝟎 = 𝟎𝟎)
and 𝟐𝟐𝒙𝒙𝟐𝟐 < 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟎𝟎𝒙𝒙 − 𝟏𝟏 ∀𝑥𝑥 ≥ 𝟐𝟐𝟏𝟏 (𝒄𝒄𝟏𝟏 = 𝟐𝟐,𝒙𝒙𝟏𝟏 = 𝟐𝟐𝟎𝟎.𝟎𝟎𝟒𝟒)

These lines
will never
cross again

orange > blue
for all x > 0

blue > green
for all x > 20.04

3𝑥𝑥2 − 20𝑥𝑥 − 1 = 𝜃𝜃(𝑥𝑥2)

6.100L Lecture 22
46

Θ vs O

 In practice, Θ bounds are preferred, because they are “tight”
For example: 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 20𝑥𝑥 − 1

 𝑓𝑓 𝑥𝑥 = 𝑂𝑂 𝑥𝑥2 = 𝑂𝑂 𝑥𝑥3 = 𝑂𝑂(2𝑥𝑥) and anything higher order
because they all upper bound it

 𝒇𝒇 𝒙𝒙 = 𝜣𝜣 𝒙𝒙𝟐𝟐

≠ Θ 𝑥𝑥3 ≠ Θ 2𝑥𝑥 and anything higher order because they
upper bound but not lower bound it

6.100L Lecture 22
47

6.0001 LECTURE 8

SIMPLIFICATION EXAMPLES

 Drop constants and multiplicative factors
 Focus on dominant term

: n2 + 2n + 2

: 3x2 + 100000x + 31000

: log(a) + a + 4

Θ(n2)
Θ(x2)
Θ(a)

6.100L Lecture 22
48

BIG IDEA

Express Theta in terms of
the input.
Don’t just use n all the time!

6.100L Lecture 22
49

YOU TRY IT!
: 1000*log(x) + x

: n2log(n) + n3

: log(y) + 0.000001y

: 2b + 1000a2 + 100*b2 + 0.0001a3

6.100L Lecture 22

Θ(x)
Θ(n3)
Θ(y)
Θ(2b)
Θ(a3)
Θ(2b+a3)
All could be ok, depends on the input we care about

50

6.0001 LECTURE 8

USING Θ TO EVALUATE YOUR
ALGORITHM

def fact_iter(n):
"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

 Number of steps:
 Worst case asymptotic complexity:

 Ignore additive constants
 2 doesn’t matter when n is big

 Ignore multiplicative constants
 5 doesn’t matter if just want to know how increasing n changes time

needed

5n + 2

Θ(n)

6.100L Lecture 22
51

6.0001 LECTURE 8

COMBINING COMPLEXITY CLASSES
LOOPS IN SERIES
 Analyze statements inside functions to get order of growth
 Apply some rules, focus on dominant term

 Law of Addition for Θ():
 Used with sequential statements
 Θ(𝑓𝑓(𝑛𝑛)) + Θ(𝑔𝑔(𝑛𝑛)) = Θ(𝑓𝑓(𝑛𝑛) + 𝑔𝑔(𝑛𝑛))

 For example,
for i in range(n):

print('a')

for j in range(n*n):

print('b')

is Θ(𝑛𝑛) + Θ(𝑛𝑛 ∗ 𝑛𝑛) = Θ(𝑛𝑛 + 𝑛𝑛2) = Θ(𝑛𝑛2) because of
dominant 𝑛𝑛2 term

Θ(n)

Θ(n2)

6.100L Lecture 22
52

6.0001 LECTURE 8

COMBINING COMPLEXITY CLASSES
NESTED LOOPS
 Analyze statements inside functions to get order of growth
 Apply some rules, focus on dominant term

 Law of Multiplication for Θ():
 Used with nested statements/loops
 Θ 𝑓𝑓 𝑛𝑛 ∗ Θ(𝑔𝑔(𝑛𝑛)) = Θ(𝑓𝑓 𝑛𝑛 ∗ 𝑔𝑔(𝑛𝑛))

 For example,
for i in range(n):

for j in range(n//2):

print('a')

 Θ(𝑛𝑛) × Θ(𝑛𝑛) = Θ(𝑛𝑛 × 𝑛𝑛) = Θ(𝑛𝑛2)
 Outer loop runs n times and the inner loop runs n times

for every outer loop iteration.

Θ(n)
Θ(n) for each outer loop iteration

6.100L Lecture 22
53

ANALYZE COMPLEXITY

 What is the Theta complexity of this program?

def f(x):
answer = 1
for i in range(x):

for j in range(i,x):
answer += 2

return answer

 Θ(1) + Θ(x)* Θ(x)* Θ(1) + Θ(1)
 Overall complexity is Θ(x2) by rules of addition and

multiplication

6.100L Lecture 22

Outer loop is Θ(x)
Inner loop is Θ(x)
Everything else is Θ(1)

54

YOU TRY IT!
 What is the Theta complexity of this program? Careful to

describe in terms of input
(hint: what matters with a list, size of elems of length?)

def f(L):
Lnew = []
for i in L:

Lnew.append(i**2)
return Lnew

6.100L Lecture 22

ANSWER:

Loop: Θ(len(L))
f is Θ(len(L))

55

YOU TRY IT!
 What is the Theta complexity of this program?

def f(L, L1, L2):
""" L, L1, L2 are the same length """
inL1 = False
for i in range(len(L)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

6.100L Lecture 22

ANSWER:

Loop: Θ(len(L)) + Θ(len(L))
f is Θ(len(L)) or Θ(len(L1)) or Θ(len(L2))

56

6.0001 LECTURE 8

COMPLEXITY CLASSES

We want to design algorithms that are as
close to top of this hierarchy as possible

6.100L Lecture 22

 Θ(1) denotes constant running time
 Θ(log n) denotes logarithmic running time
 Θ(n) denotes linear running time
 Θ(n log n) denotes log-linear running time
 Θ(nc) denotes polynomial running time

(c is a constant)
 Θ(cn) denotes exponential running time

(c is a constant raised to a power based on input size)
57

COMPLEXITY GROWTH

CLASS N = 10 N = 100 N = 1000 N = 1000000

Constant 1 1 1 1
Logarithmic 1 2 3 6
Linear 10 100 1000 1000000
Log-linear 10 200 3000 6000000
Polynomial 100 10000 1000000 1000000000000
Exponential 1024 12676506

00228229
40149670
3205376

1071508607186267320948425
0490600018105614048117055
3360744375038837035105112
4936122493198378815695858
1275946729175531468251871
4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

Good Luck!!

6.100L Lecture 22
58

SUMMARY

 Timing is machine/implementation/algorithm dependent
 Counting ops is implementation/algorithm dependent
 Order of growth is algorithm dependent

 Compare efficiency of algorithms

• Notation that describes growth
• Lower order of growth is better
• Independent of machine or specific implementation

 Using Theta
• Describe asymptotic order of growth
• Asymptotic notation

• Upper bound and a lower bound

6.100L Lecture 22
59

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

60

https://ocw.mit.edu
https://ocw.mit.edu/terms

COMPLEXITY CLASSES
EXAMPLES

(download slides and .py files to follow along)

6.100L Lecture 23

Ana Bell

1

THETA

 Theta Θ is how we denote the asymptotic complexity

 We look at the input term that dominates the function
 Drop other pieces that don’t have the fastest growth

 Drop additive constants

 Drop multiplicative constants

 End up with only a few classes of algorithms

 We will look at code that lands in each of these classes today

6.100L Lecture 23

2

WHERE DOES THE FUNCTION
COME FROM?

 Given code, start with the input parameters. What are they?

 Come up with the equation relating input to number of ops.
 f = 1 + len(L1)*5 + 1 + len(L2)*5 + 2 = 5*len(L1) + 5*len(L2) + 3

 If lengths are the same, f = 10*len(L) + 3

 Θ(f) = Θ (10*len(L) + 3) = Θ(len(L))

6.100L Lecture 23

def f(L, L1, L2):

inL1 = False

for i in range(len(L1)):

if L[i] == L1[i]:

inL1 = True

inL2 = False

for i in range(len(L2)):

if L[i] == L2[i]:

inL2 = True

return inL1 and inL2

3

WHERE DOES THE FUNCTION
COME FROM?

 A quicker way: no need to come up with the exact formula.
Look for loops and anything that repeats wrt the input
parameters. Everything else is constant.

6.100L Lecture 23

def f(L, L1, L2):

inL1 = False

for i in range(len(L1)):

if L[i] == L1[i]:

inL1 = True

inL2 = False

for i in range(len(L2)):

if L[i] == L2[i]:

inL2 = True

return inL1 and inL2

4

6.0001 LECTURE 8

COMPLEXITY CLASSES
n is the input

We want to design algorithms that are as

close to top of this hierarchy as possible

6.100L Lecture 23

 Θ(1) denotes constant running time

 Θ(log n) denotes logarithmic running time

 Θ(n) denotes linear running time

 Θ(n log n) denotes log-linear running time

 Θ(nc) denotes polynomial running time
(c is a constant)

 Θ(cn) denotes exponential running time
(c is a constant raised to a power based on input size)

5

CONSTANT COMPLEXITY

6

CONSTANT COMPLEXITY

 Complexity independent of inputs

 Very few interesting algorithms in this class, but can often have
pieces that fit this class

 Can have loops or recursive calls, but number of iterations or
calls independent of size of input

 Some built-in operations to a language are constant
 Python indexing into a list L[i]

 Python list append L.append()

 Python dictionary lookup d[key]

6.100L Lecture 23

7

CONSTANT COMPLEXITY:
EXAMPLE 1

def add(x, y):

return x+y

 Complexity in terms of either x or y: Θ(1)

6.100L Lecture 23

8

6.0001 LECTURE 9

CONSTANT COMPLEXITY: EXAMPLE 2

def convert_to_km(m):

return m*1.609

 Complexity in terms of m: Θ(1)

6.100L Lecture 23

9

CONSTANT COMPLEXITY: EXAMPLE 3

def loop(x):

y = 100

total = 0

for i in range(y):

total += x

return total

 Complexity in terms of x (the input parameter): Θ(1)

6.100L Lecture 23

10

LINEAR COMPLEXITY

11

LINEAR COMPLEXITY

 Simple iterative loop algorithms
 Loops must be a function of input

 Linear search a list to see if an element is present

 Recursive functions with one recursive call and constant
overhead for call

 Some built-in operations are linear
 e in L

 Subset of list: e.g. L[:len(L)//2]

 L1 == L2
 del(L[5])

6.100L Lecture 23

12

6.0001 LECTURE 9

COMPLEXITY EXAMPLE 0
(with a twist)

 Multiply x by y

def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

 Complexity in terms of y: Θ(y)
 Complexity in terms of x: Θ(1)

6.100L Lecture 23

13

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F280067670552813798%2F&psig=AOvVaw1fPH8tc8O7_tsHPF8fS0aR&ust=1600885710254000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDcg52y_esCFQAAAAAdAAAAABAh

BIG IDEA

Be careful about what
the inputs are.

6.100L Lecture 23

14

LINEAR COMPLEXITY: EXAMPLE 1

 Add characters of a string, assumed to be composed of
decimal digits

def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

 Θ(len(s))
 Θ(n) where n is len(s)

6.100L Lecture 23

15

LINEAR COMPLEXITY: EXAMPLE 2

 Loop to find the factorial of a number >=2

def fact_iter(n):

prod = 1

for i in range(2, n+1):

prod *= i

return prod

 Number of times around loop is n-1

 Number of operations inside loop is a constant
 Independent of n

 Overall just Θ(n)

6.100L Lecture 23

16

6.0001 LECTURE 9

FUNNY THING ABOUT FACTORIAL
AND PYTHON

 Eventually grows faster than linear

 Because Python increases the size of integers, which
yields more costly operations

 For this class: ignore such effects

6.100L Lecture 23

17

6.0001 LECTURE 10

LINEAR COMPLEXITY: EXAMPLE 3

def fact_recur(n):

""" assume n >= 0 """

if n <= 1:

return 1

else:

return n*fact_recur(n – 1)

 Computes factorial recursively

 If you time it, notice that it runs a bit slower than iterative
version due to function calls

 Θ(n) because the number of function calls is linear in n

 Iterative and recursive factorial implementations are the
same order of growth

6.100L Lecture 23

18

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F37515039%2Ffuturama-fry-not-sure-if-factorial-or-just-excited&psig=AOvVaw3IdQAEFYZ03ef0h15nle1I&ust=1600886085178000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMj5zMqz_esCFQAAAAAdAAAAABAD

def compound(invest, interest, n_months):

total=0

for i in range(n_months):

total = total * interest + invest

return total

6.0001 LECTURE 9

LINEAR COMPLEXITY: EXAMPLE 4

 Θ(1)*Θ(n_months) = Θ(n_months)
Θ(n) where n=n_months

 If I was being thorough, then need to account for assignment
and return statements:

 Θ(1) + 4*Θ(n) + Θ(1) = Θ(1 + 4*n + 1) = Θ(n) where n=n_months

Θ(1)

Θ(n_months)

6.100L Lecture 23

19

COMPLEXITY OF
ITERATIVE FIBONACCI

def fib_iter(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

fib_i = 0

fib_ii = 1

for i in range(n-1):

tmp = fib_i

fib_i = fib_ii

fib_ii = tmp + fib_ii

return fib_ii

Θ(1)+ Θ(1)+ Θ(n)*Θ (1)+ Θ(1)

 Θ(n)

6.100L Lecture 23

20

POLYNOMIAL
COMPLEXITY

21

POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

 Most common polynomial algorithms are quadratic, i.e.,
complexity grows with square of size of input

 Commonly occurs when we have nested loops or recursive
function calls

6.100L Lecture 23

22

QUADRATIC COMPLEXITY:
EXAMPLE 1

def g(n):

""" assume n >= 0 """

x = 0

for i in range(n):

for j in range(n):

x += 1

return x

 Computes n2 very inefficiently

 Look at the loops. Are they in terms of the input?
 Nested loops
 Look at the ranges
 Each iterating n times

 Θ(n) * Θ(n) * Θ(1) = Θ(n2)

6.100L Lecture 23

23

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 2

 Decide if L1 is a subset of L2: are all elements of L1 in L2?
Yes: No:
L1 = [3, 5, 2] L1 = [3, 5, 2]

L2 = [2, 3, 5, 9] L2 = [2, 5, 9]

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

6.100L Lecture 23

24

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 2

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed
len(L1) times

Each iteration will execute
inner loop up to len(L2)
times

Θ(len(L1)*len(L2))
If L1 and L2 same length
and none of elements of L1
in L2

Θ(len(L1)2)

6.100L Lecture 23

25

6.0001 LECTURE 9

QUADRATIC COMPLEXITY: EXAMPLE 3

 Find intersection of two lists, return a list with each element
appearing only once
Example:
L1 = [3, 5, 2] L1 = [7, 7, 7]

L2 = [2, 3, 5, 9] L2 = [7, 7, 7]

returns [2,3,5] returns [7]

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

unique = []

for e in tmp:

if not(e in unique):

unique.append(e)

return unique

6.100L Lecture 23

26

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 3

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

unique = []

for e in tmp:

if not(e in unique):

unique.append(e)

return unique

First nested loop takes
Θ(len(L1)*len(L2)) steps.

Second loop takes at most
Θ(len(L1)*len(L2)) steps.
Typically not this bad.

• E.g: [7,7,7] and [7,7,7] makes
tmp=[7,7,7,7,7,7,7,7,7]

Overall Θ(len(L1)*len(L2))
6.100L Lecture 23

27

def diameter(L):

farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):

p1 = L[i]

p2 = L[j]

dist = math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

if dist > farthest_dist:

farthest_dist = dist

return farthest_dist

6.0001 LECTURE 9

DIAMETER COMPLEXITY

len(L) * len(L)/2 iterations = len(L)2 / 2

Θ(len(L)2)

6.100L Lecture 23

28

YOU TRY IT!
def all_digits(nums):

""" nums is a list of numbers """

digits = [0,1,2,3,4,5,6,7,8,9]

for i in nums:

isin = False

for j in digits:

if i == j:

isin = True

break

if not isin:

return False

return True

6.100L Lecture 23

ANSWER:

What’s the input?

Outer for loop is Θ(nums).

Inner for loop is Θ(1).

Overall: Θ(len(nums))

29

YOU TRY IT!

 Asymptotic complexity of f? And if L1,L2,L3 are same length?
def f(L1, L2, L3):

for e1 in L1:

for e2 in L2:

if e1 in L3 and e2 in L3 :

return True

return False

6.100L Lecture 23

ANSWER:

Θ(len(L1))* Θ(len(L2))* Θ(len(L3)+len(L3))

Overall: Θ(len(L1)*len(L2)*len(L3))
Overall if lists equal length: Θ(len(L1)**3)

30

EXPONENTIAL
COMPLEXITY

31

EXPONENTIAL COMPLEXITY

 Recursive functions
where have more than
one recursive call for
each size of problem
 Fibonacci

 Many important
problems are inherently
exponential
 Unfortunate, as cost can

be high

 Will lead us to consider
approximate solutions
more quickly

6.100L Lecture 23

230 ~= 1 million

2100 > # cycles than all the computers

in the world working for all of recorded history

could complete
32

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib_recur(n):

""" assumes n an int >= 0 """

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib_recur(n-1) + fib_recur(n-2)

 Worst case:

Θ(2n)

6.100L Lecture 23

33

COMPLEXITY OF RECURSIVE
FIBONACCI

 Can do a bit better than 2n since tree thins out to the
right

 But complexity is still order exponential

6.100L Lecture 23

Fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(2)

Fib(3) Fib(2)

Fib(3)

Fib(2) Fib(1)

Fib(2) Fib(1) Fib(2) Fib(1)

34

EXPONENTIAL COMPLEXITY: GENERATE SUBSETS

def gen_subsets(L):

if len(L) == 0:

return [[]]

extra = L[-1:]

smaller = gen_subsets(L[:-1])

new = []

for small in smaller:

new.append(small+extra)

return smaller+new

6.100L Lecture 23

 Input is [1, 2, 3]

 Output is all combinations of elements of all lengths
[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

35

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

36

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]] def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

37

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

38

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

39

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

40

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

41

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

def gen_subsets(L):

if len(L) == 0:

return [[]]

extra = L[-1:]

smaller = gen_subsets(L[:-1])

new = []

for small in smaller:

new.append(small+extra)

return smaller+new

 Assuming append is
constant time

 Time to make sublists
includes time to solve
smaller problem, and
time needed to make a
copy of all elements in
smaller problem

42

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

 Think about size of smaller
 For a set of size k there are 2k

cases, doubling the size every
call

 So to solve need 2n-1 + 2n-2 + …
+20 steps = Θ(2n)

 Time to make a copy of
smaller
 Concatenation isn’t constant

 Θ(n)

 Overall complexity is
Θ(n*2n) where n=len(L)

def gen_subsets(L):

if len(L) == 0:

return [[]]

extra = L[-1:]

smaller = gen_subsets(L[:-1])

new = []

for small in smaller:

new.append(small+extra)

return smaller+new

43

LOGARITHMIC
COMPLEXITY

44

def digit_add(n):

""" assume n an int >= 0 """

answer = 0

s = str(n)

for c in s[::-1]:

answer += int(c)

return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?

 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 1 1

45

def digit_add(n):

""" assume n an int >= 0 """

answer = 0

s = str(n)

for c in s[::-1]:

answer += int(c)

return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?

 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 17

46

def digit_add(n):

""" assume n an int >= 0 """

answer = 0

s = str(n)

for c in s[::-1]:

answer += int(c)

return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?

 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 172

47

def digit_add(n):

""" assume n an int >= 0 """

answer = 0

s = str(n)

for c in s[::-1]:

answer += int(c)

return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?

 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 1724

48

def digit_add(n):

""" assume n an int >= 0 """

answer = 0

s = str(n)

for c in s[::-1]:

answer += int(c)

return answer

TRICKY COMPLEXITY

 Adds digits of a number together

 Tricky part: iterate over length of string, not magnitude of n
• Think of it like dividing n by 10 each iteration

• n/10len(s) = 1 (i.e. divide by 10 until there is 1 element left to add)
• len(s) = log(n)

 Θ(log n) – base doesn’t matter

6.100L Lecture 23

49

LOGARITHMIC COMPLEXITY

 Complexity grows as log of size of one of its inputs

 Example algorithm: binary search of a list

 Example we’ll see in a few slides: one bisection search
implementation

6.100L Lecture 23

50

LIST AND DICTIONARIES

 Must be careful when using built-in functions!

6.100L Lecture 23

Dictionaries – n is len(d)
• index Θ(1)
• store Θ(1)
• length Θ(1)
• delete Θ(1)
• .keys Θ(n)
• .values Θ(n)
• iteration Θ(n)

Lists – n is len(L)
• index Θ(1)

• store Θ(1)

• length Θ(1)

• append Θ(1)

• == Θ(n)
• remove Θ(n)
• copy Θ(n)
• reverse Θ(n)
• iteration Θ(n)
• in list Θ(n)

51

SEARCHING
ALGORITHMS

52

SEARCHING ALGORITHMS

 Linear search
• Brute force search

• List does not have to be sorted

• Bisection search
• List MUST be sorted to give correct answer

• Will see two different implementations of the algorithm

6.100L Lecture 23

53

LINEAR SEARCH
ON UNSORTED LIST

def linear_search(L, e):

found = False

for i in range(len(L)):

if e == L[i]:

found = True

return found

 Must look through all elements to decide it’s not there

 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]

 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23

54

LINEAR SEARCH
ON UNSORTED LIST

def linear_search(L, e):

for i in range(len(L)):

if e == L[i]:

return True

return False

 Must look through all elements to decide it’s not there

 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]

 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23

55

LINEAR SEARCH
ON SORTED LIST

def search(L, e):

for i in L:

if i == e:

return True

if i > e:

return False

return False

 Must only look until reach a number greater than e

 Θ(len(L)) for the loop * Θ(1) to test if i == e or i > e

 Overall complexity is Θ(len(L))
Θ(n) where n is len(L)

6.100L Lecture 23

56

BISECTION SEARCH FOR AN
ELEMENT IN A SORTED LIST

1) Pick an index, i, that divides list in half

2) Ask if L[i] == e

3) If not, ask if L[i] is larger or smaller than e

4) Depending on answer, search left or right half of L for e

 A new version of divide-and-conquer: recursion!

 Break into smaller versions of problem (smaller list), plus
simple operations

 Answer to smaller version is answer to original version

6.100L Lecture 23

57

BISECTION SEARCH COMPLEXITY
ANALYSIS

 Finish looking
through list when

1 = n/2i

 So… relationship
between original
length of list and
how many times
we divide the list:
i = log n

 Complexity is
Θ(log n) where n
is len(L)

…

…

6.100L Lecture 23

58

BIG IDEA
Two different
implementations have
two different Θ values.

6.100L Lecture 23

59

BISECTION SEARCH
IMPLEMENTATION 1

def bisect_search1(L, e):

if L == []:

return False

elif len(L) == 1:

return L[0] == e

else:

half = len(L)//2

if L[half] > e:

return bisect_search1(L[:half], e)

else:

return bisect_search1(L[half:], e)

6.100L Lecture 23

60

COMPLEXITY OF bisect_search1
(where n is len(L))

 Θ(log n) bisection search calls
 Each recursive call cuts range to search in half

 Worst case to reach range of size 1 from n is when
n/2k = 1 or when k = log n

 We do this to get an expression relating k to n

 Θ(n) for each bisection search call to copy list
 Cost to set up recursive call at each level of recursion

 Θ(log n) * Θ(n) = Θ(n log n) where n = len(L)
^ this is the answer in this class

 If careful, notice list is also halved on each recursive call
 Infinite series (don’t worry about this in this class)

 Θ(n) is a tighter bound because copying list dominates log n

6.100L Lecture 23

61

BISECTION SEARCH ALTERNATE
IMPLEMENTATION

6.100L Lecture 23

 Reduce size of
problem by factor
of 2 each step

 Keep track of low
and high indices
to search list

 Avoid copying list

 Complexity of
recursion is
Θ(log n) where n
is len(L)

…

…

62

def bisect_search2(L, e):

def bisect_search_helper(L, e, low, high):

if high == low:

return L[low] == e

mid = (low + high)//2

if L[mid] == e:

return True

elif L[mid] > e:

if low == mid: #nothing left to search

return False

else:

return bisect_search_helper(L, e, low, mid - 1)

else:

return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:

return False

else:

return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH
IMPLEMENTATION 2

6.100L Lecture 23

63

COMPLEXITY OF bisect_search2
and helper (where n is len(L))

 Θ(log n) bisection search calls

 Each recursive call cuts range to search in half

 Worst case to reach range of size 1 from n is when

n/2k = 1 or when k = log n

 We do this to get an expression relating k to n

 Pass list and indices as parameters
 List never copied, just re-passed

 Θ(1) on each recursive call

 Θ (log n) * Θ(1) = Θ(log n) where n is len(L)

6.100L Lecture 23

64

WHEN TO SORT FIRST
AND THEN SEARCH?

6.100L Lecture 23

65

SEARCHING A SORTED LIST
-- n is len(L)

 Using linear search, search for an element is Θ(n)
 Using binary search, can search for an element in Θ(log n)

• Assumes the list is sorted!

 When does it make sense to sort first then search?

• SORT + Θ(log n) < Θ(n)
implies that SORT < Θ(n) – Θ(log n)

• When is sorting is less than Θ(n)??!!?
 Never true because you’d at least have to look at each element!

6.100L Lecture 23

66

AMORTIZED COST
-- n is len(L)

 Why bother sorting first?

 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K * Θ(log n) < K * Θ(n)

implies that for large K, SORT time becomes irrelevant

6.100L Lecture 23

67

6.0001 LECTURE 9

COMPLEXITY CLASSES SUMMARY

 Compare efficiency of algorithms
 Lower order of growth
 Using Θ for an upper and lower (“tight”) bound

 Given a function f:
 Only look at items in terms of the input
 Look at loops

 Are they in terms of the input to f?
 Are there nested loops?

 Look at recursive calls
 How deep does the function call stack go?

 Look at built-in functions
 Any of them depend on the input?

9/28/20 6.100L Lecture 23

68

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

69

https://ocw.mit.edu
https://ocw.mit.edu/terms

SORTING ALGORITHMS
(download slides and .py files to follow along)

6.100L Lecture 24

Ana Bell

1

SEARCHING A SORTED LIST
-- n is len(L)

 Using linear search, search for an element is Θ(n)

 Using binary search, can search for an element in Θ(logn)
• assumes the list is sorted!

 When does it make sense to sort first then search?

SORT + Θ(log n) < Θ(n) implies SORT < Θ(n) – Θ(log n)

When sorting is less than Θ(n)!?!? This is never true!

6.100L Lecture 24

2

AMORTIZED COST
-- n is len(L)

 Why bother sorting first?

 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K * Θ(log n) < K * Θ(n)

 for large K, SORT time becomes irrelevant

6.100L Lecture 24

3

SORTING ALGORITHMS

4

BOGO/RANDOM/MONKEY SORT

 aka bogosort,
stupidsort, slowsort,
randomsort,
shotgunsort

 To sort a deck of cards
• throw them in the air

• pick them up

• are they sorted?

• repeat if not sorted

6.100L Lecture 24

© Nmnogueira at English Wikipedia. >icense: CC-�z-^A. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

5

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BOGO SORT

def bogo_sort(L):

while not is_sorted(L):

random.shuffle(L)

 Best case: Θ(n) where n is len(L) to check if sorted

 Worst case: Θ(?) it is unbounded if really unlucky

6.100L Lecture 24

6

BUBBLE SORT

 Compare consecutive
pairs of elements

 Swap elements in pair
such that smaller is first

 When reach end of list,
start over again

 Stop when no more
swaps have been made

Donald Knuth, in “The Art of Computer Programming”, said:
"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems"

6.100L Lecture 24

© Nmnogueira at English Wikipedia. >icense: CC-�z-^A. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

7

COMPLEXITY OF BUBBLE SORT

def bubble_sort(L):
did_swap = True
while did_swap:

did_swap = False
for j in range(1, len(L)):

if L[j-1] > L[j]:
did_swap = True
L[j],L[j-1] = L[j-1],L[j]

 Inner for loop is for doing the comparisons

 Outer while loop is for doing multiple passes until no
more swaps

 Θ(n2) where n is len(L)
to do len(L)-1 comparisons and len(L)-1 passes

6.100L Lecture 24

8

SELECTION SORT

 First step
• Extract minimum element

• Swap it with element at index 0

 Second step
• In remaining sublist, extract minimum element

• Swap it with the element at index 1

 Keep the left portion of the list sorted
• At ith step, first i elements in list are sorted

• All other elements are bigger than first i elements

6.100L Lecture 24

© Nmnogueira at English Wikipedia. >icense: CC-�z-^A. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

9

https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF SELECTION SORT

def selection_sort(L):

for i in range(len(L)):

for j in range(i, len(L)):

if L[j] < L[i]:

L[i], L[j] = L[j], L[i]

 Complexity of selection sort is 𝚯𝚯(n2) where n is len(L)
 Outer loop executes len(L) times

 Inner loop executes len(L) – i times, on avg len(L)/2

 Can also think about how many times the comparison
happens over both loops: say n = len(L)
 Approx 1+2+3+…+n = (n)(n+1)/2 = n2/2+n/2 = Θ(n2)

6.100L Lecture 24

10

VARIATION ON SELECTION SORT:
don’t swap every time

6.100L Lecture 24

11

6.0001 LECTURE 10

MERGE SORT

 Use a divide-and-conquer approach:

 If list is of length 0 or 1, already sorted

 If list has more than one element,
split into two lists, and sort each

 Merge sorted sublists

 Look at first element of each,
move smaller to end of the result

 When one list empty, just
copy rest of other list

6.100L Lecture 24

12

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj1uvPioOLdAhVFWrwKHSnwAhwQjRx6BAgBEAU&url=https://www.videoblocks.com/video/vehicles-slowly-merge-into-traffic-rpyosmadiqv16uhh&psig=AOvVaw3OWWpk6ENNJqmJvZu0CLtn&ust=1538380678448859

MERGE SORT

 Divide and conquer

 Split list in half until have sublists of only 1 element

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

merge merge merge merge merge merge merge merge

6.100L Lecture 24

13

MERGE SORT

 Divide and conquer

 Merge such that sublists will be sorted after merge

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

sort sort sort sort sort sort sort sort

merge merge merge merge

6.100L Lecture 24

14

MERGE SORT

 Divide and conquer

 Merge sorted sublists

 Sublists will be sorted after merge

unsorted

unsorted unsorted

sorted sorted sorted sorted

merge merge

6.100L Lecture 24

15

MERGE SORT

 Divide and conquer

 Merge sorted sublists

 Sublists will be sorted after merge

unsorted

sorted sorted

merge

6.100L Lecture 24

16

MERGE SORT

 Divide and conquer – done!

sorted

6.100L Lecture 24

17

6.0001 LECTURE 10

MERGE SORT DEMO

1. Recursively divide into subproblems
2. Sort each subproblem using linear merge
3. Merge (sorted) subproblems into output list

6.100L Lecture 24

18

CLOSER LOOK AT THE
MERGE STEP (EXAMPLE)

Left in list 1 Left in list 2 Compare Result

[1,5,12,18,19,20] [2,3,4,17] 1, 2 []

[5,12,18,19,20] [2,3,4,17] 5, 2 [1]

[5,12,18,19,20] [3,4,17] 5, 3 [1,2]

[5,12,18,19,20] [4,17] 5, 4 [1,2,3]

[5,12,18,19,20] [17] 5, 17 [1,2,3,4]

[12,18,19,20] [17] 12, 17 [1,2,3,4,5]

[18,19,20] [17] 18, 17 [1,2,3,4,5,12]

[18,19,20] [] 18, -- [1,2,3,4,5,12,17]

[] []

[1,2,3,4,5,12,17,18,19,20]
6.100L Lecture 24

19

MERGING SUBLISTS STEP

def merge(left, right):
result = []
i,j = 0, 0
while i < len(left) and j < len(right):

if left[i] < right[j]:
result.append(left[i])
i += 1

else:
result.append(right[j])
j += 1

while (i < len(left)):
result.append(left[i])
i += 1

while (j < len(right)):
result.append(right[j])
j += 1

return result

6.100L Lecture 24

20

6.0001 LECTURE 10

COMPLEXITY OF
MERGING STEP

 Go through two lists, only one pass

 Compare only smallest elements in each sublist

 Θ(len(left) + len(right)) copied elements

 Worst case Θ(len(longer list)) comparisons

 Linear in length of the lists

6.100L Lecture 24

21

FULL MERGE SORT ALGORITHM
-- RECURSIVE

def merge_sort(L):
if len(L) < 2:

return L[:]
else:

middle = len(L)//2
left = merge_sort(L[:middle])
right = merge_sort(L[middle:])
return merge(left, right)

 Divide list successively into halves

 Depth-first such that conquer smallest pieces down one
branch first before moving to larger pieces

6.100L Lecture 24

22

6.100L Lecture 24

8 4 1 6 5 9 2 0

8 4 1 6

8 4

8

base
case

4

base
case

1 6

1

base
case

6

base
case

Merge
4 8

Merge
4 8 & 1 6

1 4 6 8

Merge
1 6

5 9 2 0

5 9

5

base
case

9

base
case

2 0

2

base
case

0

base
case

Merge
5 9

Merge
5 9 & 0 2

0 2 5 9

Merge
0 2

Merge
1 4 6 8 & 0 2 5 9

0 1 2 4 5 6 8 9

23

COMPLEXITY OF MERGE SORT

 Each level
 At first recursion level

• n/2 elements in each list, 2 lists

• One merge Θ(n) + Θ(n) = Θ(n) where n is len(L)

 At second recursion level
• n/4 elements in each list, 4 lists

• Two merges Θ(n) where n is len(L)

 And so on…

 Dividing list in half with each recursive call gives our levels
• Θ(log n) where n is len(L)
• Like bisection search: 1 = n/2i tells us how many splits to get to one element

 Each recursion level does Θ(n) work and there are Θ(log n) levels,
where n is len(L)

 Overall complexity is 𝚯𝚯(n log n) where n is len(L)

6.100L Lecture 24

24

SORTING SUMMARY
-- n is len(L)

 Bogo sort
• Randomness, unbounded Θ()

 Bubble sort
• Θ(n2)

 Selection sort
• Θ(n2)

• Guaranteed the first i elements were sorted

 Merge sort
• Θ(n log n)

 𝚯𝚯(n log n) is the fastest a sort can be

6.100L Lecture 24

25

6.0001 LECTURE 9

COMPLEXITY SUMMARY

 Compare efficiency of algorithms
• Describe asymptotic order of growth with Big Theta
• Worst case analysis

• Saw different classes of complexity
• Constant
• Log
• Linear
• Log linear
• Polynomial
• Exponential
• A priori evaluation (before writing or running code)
• Assesses algorithm independently of machine and
implementation
• Provides direct insight to the design of efficient algorithms

10/6/20 6.100L Lecture 24

26

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.reddit.com%2Fr%2FProgrammerHumor%2Fduplicates%2Fbark1r%2Falternative_big_o_notation%2F&psig=AOvVaw3mcBDXbNxK3sHmOBuw-vdM&ust=1600886991640000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIiKk5G3_esCFQAAAAAdAAAAABAJ

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

27

https://ocw.mit.edu
https://ocw.mit.edu/terms

PLOTTING
(download slides and .py files to follow along)

6.100L Lecture 25

Ana Bell

1

WHY PLOTTING?

 Sooner or later, everyone needs to produce
plots
 Helps us visualize data to see trends, pose

computational questions to probe
 If you join 6.100B, you will make extensive use of

them
 For those of you leaving us after next week, this

is a valuable way to visualize data

 Example of leveraging an existing library,
rather than writing procedures from scratch
 Python provides libraries for:

 Plotting
 Numerical computation
 Stochastic computation
 Many others

6.100L Lecture 25

2

MATPLOTLIB

 Can import library into computing environment
import matplotlib.pyplot as plt

 Allows code to reference library procedures as
plt.<processName>

 Provides access to existing set of graphing/plotting
procedures

 Today will just show some simple examples; lots of
additional information available in documentation
associated with matplotlib
 Will see many other examples and details of these ideas if

you take 6.100B

6.100L Lecture 25

3

A SIMPLE EXAMPLE

 Idea – create different functions of a variable (n), and
visualize their differences

6.100L Lecture 25

4

https://www.google.com/imgres?imgurl=https%3A%2F%2Fmedia.makeameme.org%2Fcreated%2Flines-lines-everywhere-5b3fa5.jpg&imgrefurl=https%3A%2F%2Fmakeameme.org%2Fmeme%2Flines-lines-everywhere-5b3fa5&tbnid=34v-JdskOUHCyM&vet=12ahUKEwjYwM_H2b_zAhURn3IEHXsoBHAQMygBegUIARCAAQ..i&docid=d8N8L0j1A55BhM&w=600&h=327&itg=1&q=lines%20lines%20everywhere%20meme&client=firefox-b-1-e&ved=2ahUKEwjYwM_H2b_zAhURn3IEHXsoBHAQMygBegUIARCAAQ

 To generate a plot:
plt.plot(<x values>, <y values>)

 Arguments are lists (or sequences) of numbers
 Lists must be of the same length
 Generates a sequence of <x, y> values on a Cartesian grid
 Plotted in order, then connected with lines

 Can change iPython console to generate plots in a new
window through Preferences
 Inline in the console
 In a new window

PLOTTING THE DATA

6.100L Lecture 25

5

EXAMPLE

6.100L Lecture 25

Note how
matplotlib
automatically
fits plot within
frame

6

ORDER OF POINTS MATTERS

 Suppose I create a set of values for n and for n2, but in arbitrary
order

 Python plots using the order of the points and connecting
consecutive points

6.100L Lecture 25

7

UNORDERED EXAMPLE

6.100L Lecture 25

8

SCATTER PLOT DOES NOT CONNECT DATA POINTS

6.100L Lecture 25

9

SHOWING ALL DATA ON ONE PLOT

6.100L Lecture 25

10

PRODUCING MULTIPLE PLOTS

 Let’s graph each one in separate frame/window

 Call
plt.figure(<arg>)

 Creates a new display with that name if one does not already exist
 If a display with that name exists, reopens it for additional processing

6.100L Lecture 25

11

EXAMPLE CODE

6.100L Lecture 25

12

DISPLAY OF quad

6.100L Lecture 25

13

DISPLAY OF cube

6.100L Lecture 25

14

DISPLAY OF lin

6.100L Lecture 25

15

DISPLAY OF expo

6.100L Lecture 25

Note how
matplotlib
automatically
scales to fit both
plots within frame

16

A “REAL” EXAMPLE

6.100L Lecture 25

matplotlib has
automatically
selected x and y
scales to best fit data

17

A “REAL” EXAMPLE

6.100L Lecture 25

18

A “REAL” EXAMPLE

6.100L Lecture 25

19

A “REAL” EXAMPLE

6.100L Lecture 25

20

A “REAL” EXAMPLE

6.100L Lecture 25

21

ADDING GRID LINES

Can toggle grid lines on/off with plt.grid()

6.100L Lecture 25

22

LET’S ADD ANOTHER CITY

6.100L Lecture 25

)

)

23

https://www.google.com/url?sa=i&url=https%3A%2F%2Ftwitter.com%2Fzonirottn%2Fstatus%2F861034592001589248&psig=AOvVaw2eWL7Dxi1mXOijXciPpaOr&ust=1633961609069000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCLjc8b2DwPMCFQAAAAAdAAAAABAD

BUT WHERE AM I?

6.100L Lecture 25

24

LET’S ADD ANOTHER CITY

6.100L Lecture 25

25

https://www.google.com/url?sa=i&url=https%3A%2F%2Ftwitter.com%2Fzonirottn%2Fstatus%2F861034592001589248&psig=AOvVaw2eWL7Dxi1mXOijXciPpaOr&ust=1633961609069000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCLjc8b2DwPMCFQAAAAAdAAAAABAD

PLOT WITH TWO CURVES

6.100L Lecture 25

Note: Python
picked different
colors for each
plot; we could
specify if we
wanted

26

CONTROLLING PARAMETERS

 Suppose we want to control details of the displays
 Examples:

 Changing color or style of data sets
 Changing width of lines or displays
 Using subplots

 Can provide a “format” argument to plot
 “marker”, “line”, “color”
 Can skip any of these choices, plot takes default
 Order doesn’t matter, as no confusion between symbols

6.100L Lecture 25

27

CONTROLLING COLOR AND STYLE

6.100L Lecture 25

28

CONTROLLING COLOR AND STYLE

6.100L Lecture 25

29

USING KEYWORDS

6.100L Lecture 25

30

CONTROLLING COLOR AND STYLE

6.100L Lecture 25

31

Line Style
 - solid line
 -- dashed line
 -. dash dot line
 : dotted line

Color Options (plus many more)
 b blue
 g green
 r red
 c cyan
m magenta
 y yellow
 k black
w white

Marker Options (plus many more)
. point
o circle
v triangle down
^ triangle up
* star

LINE, COLOR, MARKER OPTIONS

6.100L Lecture 25

white

yellow

32

CONTROLLING COLOR AND STYLE

6.100L Lecture 25

33

WITH MARKERS

Note how actual
points being plotted
are now marked

6.100L Lecture 25

34

CONTROLLING LINE WIDTH

6.100L Lecture 25

35

MANY OTHER OPTIONS

 Using the linewidth keyword (in pixels)

6.100L Lecture 25

36

PLOTS WITHIN PLOTS

6.100L Lecture 25

37

AND THE PLOT THICKENS

6.100L Lecture 25

But this can be
misleading?

Y scales are
different!

38

PLOTS WITHIN PLOTS

6.100L Lecture 25

39

AND THE PLOT THICKENS

6.100L Lecture 25

40

LOTS OF SUBPLOTS

6.100L Lecture 25

41

AND THE PLOT THICKENS

6.100L Lecture 25

42

US POPULATION
EXAMPLE

6.100L Lecture 25

43

 Let’s try plotting some more complicated data

 We have provided a file with the US population recorded every
10 years for four centuries

 Would like to use plotting to examine that data
 Use plotting to help visualize trends in the data
 Use plotting to raise questions that might be tested computationally

(you’ll see much more of this if you take 6.100B)

A MORE INTERESTING EXAMPLE

6.100L Lecture 25

44

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.verywellmind.com%2Fan-overview-of-enochlophobia-4782189&psig=AOvVaw36evOqseDVo4Hy13Y536S-&ust=1633951953569000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCLj-38rfv_MCFQAAAAAdAAAAABAD

THE INPUT FILE
USPopulation.txt

...

6.100L Lecture 25

45

PLOTTING THE DATA

6.100L Lecture 25

46

POPULATION GROWTH

What’s going on in the early years? Impact of WWII

6.100L Lecture 25

Impact of Civil War

Visualizing data
can expose things
not easily seen in
raw data

Could I visualize this differently?

47

CHANGING THE SCALING

6.100L Lecture 25

Log scale means each increment along axis
corresponds to exponential increase in
size; while in normal scale each increment
corresponds to linear increase in size

48

POPULATION GROWTH

What does linear growth on a
log scale mean?

6.100L Lecture 25

Can now see that there was
growth early on, actually at a
faster rate than later years

49

WHICH DO YOU FIND MORE INFORMATIVE?

Visualization can raise questions: for ex.
by eye, it appears that there are three
different exponential growth periods

Changing visualization can help expose
trends in data not seen with standard
plotting

6.100L Lecture 25

50

COUNTRY POPULATION
EXAMPLE

6.100L Lecture 25

51

THE DATA FILE
countryPops.txt

...

6.100L Lecture 25

Interested in
analyzing the
population numbers.
Don’t care about
rank, country, or year.

52

LOADING AND
PLOTTING THE DATA

6.100L Lecture 25

53

POPULATION SIZES

6.100L Lecture 25

54

STRANGE INVESTIGATION: FIRST DIGITS

6.100L Lecture 25

55

Benford’s Law
𝑃𝑃 𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙10(1+

1
𝑑𝑑

)

6.100L Lecture 25

Many datasets follow this:
 # social media followers
 Stock values
 Grocery prices
 Sports stats
 Building heights
 Taxes paid

FREQUENCY OF EACH DIGIT

56

COMPARING CITIES
EXAMPLE

6.100L Lecture 25

57

 Let’s use another example to examine how plotting allows us to
explore data in different ways, and how it provides a valuable
way to visualize that data

 Won’t be looking at the code in detail

 Example data set
 Mean daily temperature for each day for 55 years for 21 different US

cities
 Want to explore variations across years, and across cities

AN EXTENDED EXAMPLE

6.100L Lecture 25

58

THE DATA FILE
temperatures.csv

...

6.100L Lecture 25

59

EXTRACTING DATA

6.100L Lecture 25

This will return a list of temperatures (in F) and a
corresponding list of dates for a specific city

File stores data as str,
need to convert

temperatures.csv

CITY,TEMP,DATE
SEATTLE,3.1,19610101
SEATTLE,0.55,19610102
SEATTLE,0,19610103
SEATTLE,4.45,19610104

Only want temp
for a specific city

60

AVERAGE TEMPERATURES

Just plotting points
as a scatter plot (no
connecting lines)

Get list of cities

6.100L Lecture 25

Using first two
characters as

label

Compute
average

temperature

This will calculate the average temp over every day for 55 years, for every city.

61

AND THE TEMPERATURE IS …

6.100L Lecture 25

Detroit, Chicago,
Boston

San Juan, Miami,
Phoenix

62

BUT MORE INTERESTING TO LOOK
AT CHANGE OVER TIME

6.100L Lecture 25

Previous
code

Get temp
data for
year

Check that
entry is for
right year

For one city, calculate the average temperature over each year.

63

BUT MORE INTERESTING TO LOOK
AT CHANGE OVER TIME

6.100L Lecture 25

Pick some cities to plot 55 temps (avg temp over each year)

64

BABY IT’S COLD OUTSIDE!

6.100L Lecture 25

65

BUT WHAT IS VARIATION?
high, low, avg temps by year

6.100L Lecture 25

66

BUT WHAT IS VARIATION?
high, low, avg temps by year

6.100L Lecture 25

67

 Can see range for each city

 Not helpful for comparison between cities
 Y axis for Boston is 0 to 80
 Y axis for Miami is 40 to 90
 Y axis for San Diego is 50 to 90

SOME CITY EXAMPLES

6.100L Lecture 25

68

USE SAME Y RANGE FOR ALL PLOTS

6.100L Lecture 25

Fix the
display
range for
y axis

69

 One reason to plot is to visualize data

 Can see that range of variation is quite different for Boston,
compared to Miami or San Diego

 Can also see that mean for Miami much closer to max than
min. Different from Boston and San Diego

BETTER CITY COMPARISON

6.100L Lecture 25

70

HOW MANY DAYS AT A TEMP in 1961?

6.100L Lecture 25

Count number of
days of a
particular year for
which a specific
temperature was
the daily average

Create a list of
temperatures for a
specific year

Set up a list of 100 elements, making a histogram-like structure.
• Index 0 stores how many days had a temp of 0
• Index 1 stores how many days had a temp of 1

…
• Index 99 stores how many days had a temp of 99.

71

HOW MANY DAYS AT A TEMP IN 1961?

6.100L Lecture 25

72

SAN DIEGO IS BORING?

6.100L Lecture 25

Could we fit a curve to parts of this data?
Uniform? Gaussian (aka bell)?

73

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpt.memedroid.com%2Fmemes%2Fdetail%2F1458839&psig=AOvVaw3LQkcttbeedZYdj_G9jHVZ&ust=1633955086101000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCNjq_KLrv_MCFQAAAAAdAAAAABAD

CHANGE OVER TIME?

6.100L Lecture 25

Plot two distributions, one for 1961 and one for 2015

74

OVERLAY BAR CHARTS

6.100L Lecture 25

75

OR CAN PLOT SEPARATELY

6.100L Lecture 25

76

CAN CONTROL LOTS OF OTHER THINGS

 Size of
 Markers
 Lines
 Title
 Labels
 x and y ticks

 Scales of both axes
 Subplots
 Text boxes
 Kind of plot
 Scatter plots
 Bar plots
 Histograms
 …

Scratched the surface today!

6.100L Lecture 25

77

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

78

https://ocw.mit.edu
https://ocw.mit.edu/terms

LIST ACCESS, HASHING,
SIMULATIONS,
& WRAP-UP!

(download slides and .py files to follow along)

6.100L Lecture 26

Ana Bell

1

TODAY

 A bit about lists

 Hashing

 Simulations

6.100L Lecture 26

2

LISTS

6.100L Lecture 26

3

COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)

• delete θ(n)

• copy θ(n)

• reverse θ(n)

• iteration θ(n)

• in list θ(n)

6.100L Lecture 26

4

CONSTANT TIME LIST ACCESS

 If list is all ints, list of length L
 Set aside 4*len(L) bytes
 Store values directly
 Consecutive set of memory locations

 List name points to first memory location

 To access ith element
 Add 32*i to first location

 Access that location in memory
 Constant time complexity

…

6.100L Lecture 26

actual value

1234 5295

5

CONSTANT TIME LIST ACCESS

 If list is heterogeneous

 Can’t store values directly (don’t all fit in 32 bits)
 Use indirection to reference other objects

 Store pointers to values (not value itself)
 Still use consecutive set of memory locations

 Still set aside 4*len(L) bytes
 Still add 32*i to first location and +1 to access that location in memory

 Still constant time complexity

6.100L Lecture 26

…

value stored is pointer to
actual object in memory5295pointer to a list

6

 Just use a list of pairs: key, value
[['Ana', True], ['John', False], ['Eric', False], ['Sam', False]]

 What is time complexity to index into this naïve dictionary?
 We don’t know the order of entries

 Have to do linear search to find entry

NAÏVE IMPLEMENTATION OF dict

6.100L Lecture 26

7

COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)

• delete θ(n)

• copy θ(n)

• reverse θ(n)

• iteration θ(n)

• in list θ(n)

 Dictionaries: n is len(d)

 worst case (very rare)
• length θ(n)

• access θ(n)

• store θ(n)

• delete θ(n)

• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in θ(1)
• iteration θ(n)

6.100L Lecture 26

8

HASHING

6.100L Lecture 26

9

DICTIONARY IMPLEMENTATION

 Uses a hash table

 How it does it
 Convert key to an integer – use a hash function

 Use that integer as the index into a list

 This is constant time

 Find value associated with key

 This is constant time

 Dictionary lookup is constant time complexity

 If hash function is fast enough

 If indexing into list is constant

6.100L Lecture 26

10

 Just to reveal what’s under the hood, a function hash()

QUERYING THE HASH FUNCTION

6.100L Lecture 26

11

HASH TABLE

 How big should a hash table be?

 To avoid many keys hashing to the same
value, have each key hash to a separate value

 If hashing strings:
 Represent each character with binary code

 Concatenate bits together, and convert to an

integer

6.100L Lecture 26

12

NAMES TO INDICES

 E.g., 'Ana Bell'
= 01000001 01101110 01100001 00100000 01000010 01100101 01101100 01101100

= 4,714,812,651,084,278,892

 Advantage: unique names mapped to unique indices

 Disadvantage: VERY space inefficient

 Consider a table containing MIT’s ~4,000 undergraduates
 Assume longest name is 20 characters

 Each character 8 bits, so 160 bits per name

 How many entries will table have?

6.100L Lecture 26

2160 1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976

13

A BETTER IDEA: ALLOW COLLISIONS

6.100L Lecture 26

14

Hash table (like a list)

0

1
2
3

Ana: C

Eric: A

John: B

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a hash

table with 16 entries)

4

5
6
7

8

9
10
11
12

13
14
15

Eve: B

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Eve B

5 + 22 + 5 = 32
32%16 = 0

15

PROPERTIES OF A GOOD HASH
FUNCTION

 Maps domain of interest to integers between
0 and size of hash table

 The hash value is fully determined by value being hashed
(nothing random)
 The hash function uses the entire input to be hashed

 Fewer collisions

 Distribution of values is uniform, i.e., equally likely to land
on any entry in hash table

 Side Reminder: keys in a dictionary must be hashable

 aka immutable

 They always hash to the same value

 What happens if they are not hashable?

6.100L Lecture 26

16

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Hash table (like a list)

0

1
2
3

Ana: C

Eric: A

John: B

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

4

5
6
7

8

9
10
11
12

13
14
15

[K, a, t, e] B

11 + 1 + 20 + 5 = 37
37%16 = 5

[K,a,t,e]: B

Eve B

5 + 22 + 5 = 32
32%16 = 0

Eve: B

17

Hash table (like a list)

0

1
2
3

Ana: C

Eric: A

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

Kate changes her name to Cate. Same
person, different name. Look up her
grade? 4

5
6
7

8

9
10
11
12

13
14
15

[C, a, t, e]

3 + 1 + 20 + 5 = 29
29%16 = 13

[K,a,t,e]: B

 ??? Not here!

John: B

Eve: B

18

COMPLEXITY OF SOME PYTHON OPERATIONS

 Dictionaries: n is len(d)

 worst case (very rare)
• length θ(n)

• access θ(n)

• store θ(n)

• delete θ(n)

• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in θ(1)
• iteration θ(n)

6.100L Lecture 26

19

SIMULATIONS

6.100L Lecture 26

20

TOPIC USEFUL FOR MANY
DOMAINS

 Computationally describe the world using randomness

 One very important topic relevant to many fields of study
 Risk modeling and analysis

 Reduce complex models

 Idea:
 Observe an event and want to calculate something about it

 Using computation, design an experiment of that event

 Repeat the experiment K many times (make a simulation)
 Keep track of the outcome of your event

 After K repetitions, report the value of interest

6.100L Lecture 26

21

ROLLING A DICE

 Observe an event and want to calculate something about it
 Roll a dice, what’s the prob to get a ::? How about a .?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one

 random.choice(['.',':',':.','::','::.',':::'])

 Repeat the experiment K many times (simulate it!)
 Randomly choose a die face from a list repeatedly, 10000 times
 How? Wrap the simulation in a loop!
for i in range(10000):

roll=random.choice(['.',':',':.','::','::.',':::'])

 Keep track of the outcome of your event
 Count how many times out of 10000 the roll equaled ::

 After K repetitions, report the value of interest
 Divide the count by 10000

6.100L Lecture 26

22

THE SIMULATION CODE

6.100L Lecture 26

def prob_dice(side):

dice = ['.',':',':.','::','::.',':::']

Nsims = 10000

count = 0

for i in range(Nsims):

roll = random.choice(dice)

if roll == side:

count += 1

print(count/Nsims)

prob_dice('.')

prob_dice('::')

23

THAT’S AN EASY SIMULATION

 We can compute the probability of a die roll mathematically

 Why bother with the code?

 Because we can answer variations of that original question
and we can ask harder questions!
 Small tweaks in code

 Easy to change the code

 Fast to run

6.100L Lecture 26

24

NEW QUESTION
NOT AS EASY MATHEMATICALLY

 Observe an event and want to calculate something about it
 Roll a dice 7 times, what’s the prob to get a :: at least 3 times out of 7

rolls?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one 7 times in a

row

 Face counter increments when you choose :: (keep track of this number)

 Repeat the experiment K many times (simulate it!)
 Repeat the prev step 10000 times.
 How? Wrap the simulation in a loop!

 Keep track of the outcome of your event
 Count how many times out of 10000 the :: face counter >= 3

 After K repetitions, report the value of interest
 Divide the outcome count by 10000

6.100L Lecture 26

25

EASY TWEAK TO
EXISTING CODE

6.100L Lecture 26

def prob_dice_atleast(Nrolls, n_at_least):

dice = ['.',':',':.','::','::.',':::']

Nsims = 10000

how_many_matched = []

for i in range(Nsims):

matched = 0

for i in range(Nrolls):

roll = random.choice(dice)

if roll == '::':

matched += 1

how_many_matched.append(matched)

count = 0

for i in how_many_matched:

if i >= n_at_least:

count += 1

print(count/len(how_many_matched))

prob_dice_atleast(7, 3)

prob_dice_atleast(1, 1)
26

REAL WORLD QUESTION
VERY COMMON EXAMPLE OF HOW
USEFUL SIMULATIONS CAN BE

 Water runs through a faucet somewhere
between 1 gallons per minute and
3 gallons per minute

 What’s the time it takes to fill a 600 gallon pool?
 Intuition?

 It’s not 300 minutes (600/2)
 It’s not 400 minutes (600/1 + 600/3)/2

 In code:
 Grab a bunch of random values between 1 and 3

 Simulate the time it takes to fill a 600 gallon pool with each
randomly chose value

 Print the average time it takes to fill the pool over all these
randomly chosen values

6.100L Lecture 26

27

6.100L Lecture 26

def fill_pool(size):

flow_rate = []

fill_time = []

Npoints = 10000

for i in range(Npoints):

r = 1+2*random.random()

flow_rate.append(r)

fill_time.append(size/r)

print('avg flow_rate:', sum(flow_rate)/len(flow_rate))

print('avg fill_time', sum(fill_time)/len(fill_time))

plt.figure()

plt.scatter(range(Npoints),flow_rate,s=1)

plt.figure()

plt.scatter(range(Npoints),fill_time,s=1)

fill_pool(600)

28

PLOTTING RANDOM FILL RATES AND
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate Time to fill using formula
pool_size/rate

6.100L Lecture 26

29

PLOTTING RANDOM FILL RATES AND
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate (sorted) Time to fill (sorted) using formula
pool_size/rate

6.100L Lecture 26

30

RESULTS

 avg flow_rate: 1.992586945871106 approx. 2 gal/min
(avg random values between 1 and 3)

 avg fill_time: 330.6879477596955 approx. 331 min
(not what we expected!)

 Not 300 and not 400

 There is an inverse relationship for fill time vs fill rate
 Mathematically you’d have to do an integral

 Computationally you just write a few lines of code!

6.100L Lecture 26

31

WRAP-UP of 6.100L
THANK YOU FOR BEING IN THIS CLASS!

6.100L Lecture 26

32

 Python syntax

 Flow of control
 Loops, branching, exceptions

 Data structures
 Tuples, lists, dictionaries

 Organization, decomposition, abstraction
 Functions

 Classes

 Algorithms
 Binary/bisection

 Computational complexity
 Big Theta notation
 Searching and sorting

WHAT DID YOU LEARN?

6.100L Lecture 26

33

YOUR EXPERIENCE

 Were you a “natural”?

 Did you join the class late?

 Did you work hard?

 Look back at the first pset
it will seem so easy!

 You learned a LOT no matter what!
6.100L Lecture 26

34

WHAT’S NEXT

 6.100B overview of interesting topics
in CS and data science (Python)
 Optimization problems

 Simulations

 Experimental data

 Machine learning

35

WHAT’S NEXT

 6.101 fundamentals of
programming (Python)
 Implementing efficient algorithms

 Debugging

6.100L Lecture 26

36

WHAT’S NEXT

 6.102 software construction
(TypeScript)
 Writing code that is safe from bugs,

easy to understand, ready for change

6.100L Lecture 26

37

WHAT’S NEXT

 Other classes
(ML, algorithms, etc.)

6.100L Lecture 26

38

IT’S EASY TO FORGET WITHOUT PRACTICE!
HAPPY CODING!

6.100L Lecture 26

39

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

40

https://ocw.mit.edu
https://ocw.mit.edu/terms

